计算机科学 ›› 2025, Vol. 52 ›› Issue (11A): 250100019-7.doi: 10.11896/jsjkx.250100019
岳倩雯1, 王东强2, 张强1
YUE Qianwen1, WANG Dongqiang2, ZHANG Qiang1
摘要: 在点云配准领域,面对低重叠率的点云时,如何有效捕捉细节特征并提高配准精度是两大核心挑战。尽管传统特征提取方法已取得一定成效,但其对点云几何信息的挖掘尚显不足,导致所提取特征的区分度有限。当前的技术主要依赖于位置编码和几何嵌入策略,虽在一定程度上增强了模型的几何理解能力,但在面对高离群值的场景时,配准精度仍有提升空间。为了解决这些问题,提出了一种融合自适应优化与多维聚焦的点云配准网络ROPNet。通过引入多维聚焦、自适应调制核以及动态优化选择器模块来捕捉全局特征和局部细节,识别点云的空间位置和对应关系,理解点云数据的内在结构,增强内点的识别能力,提升了配准精度。实验结果表明,ROPNet在多个数据集上均展现出优越性能。具体来说,在3DMatch数据集中,将配准召回率提升至92.4%,内点比率提高到71.3%。而在KITTI数据集上,不仅实现99.8%的高配准精度,同时还将相对旋转误差降低至0.24°,相对平移误差降低至6.6 cm。
中图分类号:
| [1]SCHNABEL R,WAHL R,KLEIN R.Efficient ransac for point-cloud shape detection[C]//Computer Graphics Forum.2007:214-226. [2]AIGER D,MITRA N J,COHEN-OR D.4-points congruent sets for robust pairwise surface registration[C]//ACM SIGGRAPH 2008.2008:1-10. [3]MELLADO N,AIGER D,MITRA N J.Super 4pcs fast globalpointcloud registration via smart indexing[C]//Computer Graphics Forum.2014:205-215. [4]SCHENKER P S.SENSOR FUSION IV:Control paradigms and data structures[C]//Proceedings of the Meeting,Boston,Ma(Number SPIE-1611).Society of Photo-Optical Instrumentation Engineers(SPIE Proceedings.Vol.1611),1992. [5]MAGNUSSON M.The three dimensional normal-distributionstransform:an efficient representation for registration,surface analysis,and loop detection[D].Orebro universitet,2009. [6]SHARP G C,LEE S W,WEHED K.Icp registration using invariant features[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(1):90-102. [7]BOUAZIZ S,AGLIASACCHI A,PAULY M.Sparse iterativeclosest point[C]//Computer Graphics Forum.2013:113-123. [8]YANG J,LI H,CAMPBELL D,et al.Go-icp:A globally optimal solution to 3d icp point-set registration[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,38(11):2241-2254. [9]RUSU R B,BLODOW N,BEETZ M.Fast point feature histograms(fpfh) for 3d registration[C]//2009 IEEE International Conference on Robotics and Automation.IEEE,2009:3212-3217. [10]SALTI S,TOMBARI F,DI STEFANO L.Shot:Unique signatures of histograms for surface and texture description[J].Computer Vision and Image Understanding,2014,125:251-264. [11]CHOY C,PARK J,KOLTUN V.Fully convolutional geometric features[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:8958-8966. [12]BAI X,LUO Z,ZHOU L,et al.D3feat:Joint learning of dense detection and description of 3d local features[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:6359-6367. [13]AOKI Y,GOFORTH H,SRIVATSAN R A,et al.Pointnetlk:Robust & efficient point cloud registration using pointnet[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:7163-7172. [14]BAKER S,MATTHEWS I.Lucas-kanade 20 years on:A unifying framework[J].International Journal of Computer Vision,2004,56:221-255. [15]QI C R,SU H,MO K,et al.Pointnet:Deep learning on point sets for 3d classification and segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:652-660. [16]WANG Y,SOLOMON J M.Deep closest point:Learning representations for point cloud registration[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:3523-3532. [17]HUANG S,GOJCIC Z,USVYATSOV M,et al.Predator:Re-gistration of 3d point clouds with low overlap[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:4267-4276. [18]HUANG X,QU W,ZUO Y,et al.Imfnet:Interpretable multimodal fusion for point cloud registration[J].IEEE Robotics and Automation Letters,2022,7(4):12323-12330. [19]YEW Z J,LEE J H.Regtr:End-to-end point cloud correspondences with transformers[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:6677-6686. [20]THOMAS H,QI C R,DESCHAUD J E,et al.Kpconv:Flexible and deformable convolution for point clouds[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:6411-6420. [21]VASWANI A.Attention is all you need[C]//Advances in Neural Information Processing Systems.2017. [22]YU H,LI F,SALEH M.Cofinet:Reliable coarse-to-fine corre-spondences for robust point cloud registration[C]//Advances in Neural Information Processing Systems.2021:23872-23884. [23]LU F,CHEN G,LIU Y,et al.Hregnet:A hierarchical network for large-scale outdoor lidar point cloud registration[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:16014-16023. [24]QIN Z,YU H,WANG C,et al.Geotransformer:Fast and robust point cloud registration with geometric transformer[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2023,45(8):9806-9821. [25]SINKHORN R,KNOPP P.Concerning nonnegative matricesand doubly stochastic matrices[J].Pacific Journal of Mathema-tics,1967,21(2):343-348. [26]ARUN K S,HUANG T S,BLOSTEIN S D.Least-squares fitting of two 3-d point sets[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1987,5:698-700. [27]PASZKE A,GROSS S,MASSA F,et al.Pytorch:An imperative style,high-performance deep learning library[C]//Advances in Neural Information Processing Systems.2019. [28]KONUR O,KINGMA D,BA J.Adam:A method for stochastic optimization[C]//ICLR.2015:1-15. [29]ZENG A,SONG S,NIEßNER M,et al.3dmatch:Learning local geometric descriptors from rgb-d reconstructions[C]//Procee-dings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:1802-1811. [30]GEIGER A,LENZ P,URTASUN R.Are we ready for autonomous driving? the kitti vision benchmark suite[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2012:3354-3361. |
|
||