计算机科学 ›› 2025, Vol. 52 ›› Issue (11A): 241100009-6.doi: 10.11896/jsjkx.241100009

• 计算机网络 • 上一篇    下一篇

基于信息价值的合作感知服务中的冗余压缩策略

王睿家1, 申振2, 李俊杰2, 丁磊1,2   

  1. 1 中国电子科技集团公司第三十六研究所 浙江 嘉兴 314033
    2西安电子科技大学通信工程学院 西安 710071
  • 出版日期:2025-11-15 发布日期:2025-11-10
  • 通讯作者: 李俊杰(z15639179762@163.com)
  • 作者简介:wrj7327@163.com
  • 基金资助:
    国家自然科学基金面上项目(62371381)

Redundancy Compression Strategy in Cooperative Perception Services Based on Value ofInformation

WANG Ruijia1, SHEN Zhen2, LI Junjie2, DING Lei1,2   

  1. 1 The 36 Research Laboratory of China Electronics Technology Group,Jiaxing,Zhejiang 314033,China
    2 School of Telecommunications Engineering,Xidian University,Xi’an 710071,China
  • Online:2025-11-15 Published:2025-11-10
  • Supported by:
    National Natural Science Foundation of China(62371381)

摘要: 自动驾驶车辆(Connected and Autonomous Vehicles,CAVs)利用车联万物(Vehicle-to-Everything,V2X)和6G网络数据实现合作感知服务(Cooperative Perception Service,CPS)。在实际交通系统中,会出现多个CAVs同时感知并分享同一对象的情况,导致在网络中交换了许多不相关的冗余信息,从而增加了额外的通信开销。为了解决这个问题,提出了一种基于信息价值(Value of Information,VoI)的冗余压缩策略。首先,通过数学方法来量化感知信息的价值;接着,当CAV向基站发送上传请求时,信息价值汇总到基站;然后,将CPS的满意度表示为基站控制下的一个最大化问题,并通过模拟退火(Simulated Annealing,SA)算法进行求解。该策略允许基站最优地控制CAV上传的信息,最大限度地提高CAV协作感知的效用,并最小化V2X网络中的冗余。仿真结果表明,与现有策略相比,该策略能有效降低目标冗余,使平均减少22.3%的传输延迟,使CPS质量提高21.6%。

关键词: CAV, 6G, 信息价值, 冗余压缩策略, 信息融合

Abstract: Connected andAutonomous Vehicles(CAVs) leverage Vehicle-to-Everything(V2X) communication and 6G sensor data to enable Cooperative Perception Services(CPS).In road environments,multiple CAVs may simultaneously perceive and share information about the same object.This results in the exchange of significant amounts of irrelevant and redundant information within the V2X network,leading to additional communication overhead.To address this issue,a redundancy compression strategy based on the Value of Information(VoI) is proposed.Firstly,the value of perception information is quantified through mathematical methods.Then,when a CAV sends an upload request to the base station,the VoI is aggregated at the base station.Subsequently,CPS satisfaction is formulated as a maximization problem under the control of the base station,which is solved using a Simulated Annealing(SA) algorithm.This strategy enables the base station to optimally control the information uploaded by CAVs,maximizing the utility of cooperative perception and minimizing redundancy in the V2X network.Simulation results show that compared to existing strategies,the proposed approach effectively reduces target redundancy,achieving an average reduction in transmission delay by 22.3% and improving CPS quality by 21.6%.

Key words: CAV, 6G, Value of information, Redundancy compression strategy, Information fusion

中图分类号: 

  • TP391
[1]CHEN S,HU J,SHI Y,et al.Vehicle-to-everything(V2X) ser-vices supported by LTE-based systems and 5G[J].IEEE Communications Standards Magazine,2017,1(2):70-76.
[2]MASI S,XU P,BONNIFAIT P,et al.Augmented perceptionwith cooperative roadside vision systems for autonomous driving in complex scenarios[C]//2021 IEEE International Intelligent Transportation Systems Conference(ITSC).IEEE,2021:1140-1146.
[3]HUANG T,LIU J,ZHOU X,et al.V2x cooperative perception for autonomous driving:Recent advances and challenges[J].arXiv:2310.03525,2023.
[4]CAILLOT A,OUERGHI S,VASSEUR P,et al.Survey on cooperative perception in an automotive context[J].IEEE Transactions on Intelligent Transportation Systems,2022,23(9):14204-14223
[5]ZHOU H,XU W,CHEN J,et al.Evolutionary v2x technologies toward the internet of vehicles:Challenges and opportunities[C]//Proceedings of the IEEE.2020:308-323.
[6]HUSSAIN R,ZEADALLY S.Autonomous cars:Research re-sults,issues,and future challenges[J].IEEE Communications Surveys & Tutorials,2018,21(2):1275-1313.
[7]YOON D D,AYALEW B,ALI G M N.Performance of decentralized cooperative perception in v2v connected traffic[J].IEEE Transactions on Intelligent Transportation Systems,2021,23(7):6850-6863.
[8]ETSI.Vehicular Communications;Basic Set of Applications;Analysis of the Collective Perception Service(CPS):ETSI,ETSI Technical Report TR 103 562[R].2019.
[9]ESKANDARIAN A,WU C,SUN C.Research advances andchallenges of autonomous and connected ground vehicles[J].IEEE Transactions on Intelligent Transportation Systems,2019,22(2):683-711.
[10]ETS I.Vehicular Communications;Basic Set of Applications;Collective Perception Service(CPS):ETSI,ETSI Technical Report TS 103 324[R].2023.
[11]DELOOZ Q,WILLECKE A,GARLICHS K,et al.Analysis and evaluation of information redundancy mitigation for v2x collective perception[J].IEEE Access,2022,10:47076-47093.
[12]THANDAVARAYAN G,SEPULCRE M,GOZALVEZ J.Gene-ration of cooperative perception messages for connected and automated vehicles[J].IEEE Transactions on Vehicular Technology,2020,69(12):16336-16 341.
[13]HUANG H,LI H,SHAO C,et al.Data redundancy mitigationin v2x based collective perceptions[J].IEEE Access,2020,8:13405-13418.
[14]CHTOUROU A,MERDRIGNAC P,SHAGDAR O.Context-aware content selection and message generation for collective perception services[J].Electronics,2021,10(20):2509.
[15]ABDEL-AZIZ M K,PERFECTO C,SAMARAKOON S,et al.Vehicular cooperative perception through action branching and federated reinforcement learning[J].IEEE Transactions on Communications,2021,70(2):891-903.
[16]Simulte - lte user plane simulation model for inet(omnetpp.org)[EB/OL].https://simulte.omnetpp.org/faq.html,2024.
[17]KRAJZEWICZ D.Traffic simulation with sumo-simulation of urban mobility[M]//Fundamentals of Traffic Simulation.2010:269-293.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!