计算机科学 ›› 2025, Vol. 52 ›› Issue (11A): 241100005-10.doi: 10.11896/jsjkx.241100005
段博文, 殷继彬, 张航
DUAN Bowen, YIN Jibin, ZHANG Hang
摘要: 针对红嘴蓝鹊优化算法(Red-billed Blue Magpie Optimization Algorithm,RBMO)存在多样性迅速退化、寻优精度差、易陷入局部最优的问题,提出了一种基于混合策略的自适应红嘴蓝鹊优化算法(Adaptive Red-Billed Blue Magpie Optimization Algorithm Based on Mixed Strategy,JRBMO)。首先,引入Hammersley序列初始化种群,使初始解分布更均匀,为寻优提供基础;其次,在勘探阶段,提出自适应螺旋围捕策略,通过动态控制个体的勘探范围与方向,提高RBMO的搜索能力。在开发阶段,引入莱维飞行策略,对当前最优解进行局部扰动,增强算法局部开发能力;最后,提出自适应维度变异策略,根据种群适应度分布的变化,对个体进行维度变异,避免算法陷入局部最优。在CEC2017与CEC2019测试集上对算法性能进行评估,结果显示JRBMO均值胜率分别达到88.9%和70%,验证了JRBMO的有效性。此外,将JRBMO应用于拉(压)弹簧设计问题和三维无线传感器网络(WSN)节点覆盖问题上,JRBMO均取得了最优的结果,其中WSN节点均值覆盖率高出原算法6.3%,体现了JRBMO在实际应用中的普适性。
中图分类号:
| [1]TALBI E G.Metaheuristics:From Design to Implementation[J].John Wiley & Sons Google Schola,2009,2:268-308. [2]YU H,LI W,CHEN C,et al.Dynamic Gaussian bare-bones fruit fly optimizers with abandonment mechanism:method and analysis[J].Engineering with Computers,2020:1-29. [3]GHAREHCHOPOGH F S,IBRIKCI T.An improved Africanvultures optimization algorithm using different fitness functions for multi-level thresholding image segmentation[J].Multimedia Tools and Applications,2024,83(6):16929-16975. [4]SOOD M,VERMA S,PANCHAL V K.Optimal path planning using swarm intelligence based hybrid techniques[J].Journal of Computational and Theoretical Nanoscience,2019,16(9):3717-3727. [5]RAJWAR K,DEEP K,DAS S.An exhaustive review of the metaheuristic algorithms for search and optimization:taxonomy,applications,and open challenges[J].Artificial Intelligence Review,2023,56(11):13187-13257. [6]KATOCH S,CHAUHAN S S,KUMAR V.A review on genetic algorithm:past,present,and future[J].Multimedia Tools and Applications,2021,80:8091-8126. [7]PRICE K V.Differential evolution[M]//Handbook of Optimization:From Classical to Modern Approach.Berlin,Heidelberg:Springer Berlin Heidelberg,2013:187-214. [8]SU H,ZHAO D,HEIDARI A A,et al.RIME:A physics-based optimization[J].Neurocomputing,2023,532:183-214. [9]MIRRASHID M,NADERPOUR H.Incomprehensible but In-telligible-in-time logics:Theory and optimization algorithm[J].Knowledge-Based Systems,2023,264:110305. [10]MIRJALILI S,MIRJALILI S M,LEWIS A.Grey wolf optimizer[J].Advances in Engineering Software,2014,69:46-61. [11]MAFARJA M,MIRJALILI S.Whale optimization approachesfor wrapper feature selection[J].Applied Soft Computing,2018,62:441-453. [12]CHOPRA N,ANSARI M M.Golden jackal optimization:A novel nature-inspired optimizer for engineering applications[J].Expert Systems with Applications,2022,198:116924. [13]ABDEL-BASSET M,MOHAMED R,ABOUHAWWASH M.Crested Porcupine Optimizer:A new nature-inspired metaheuristic[J].Knowledge-Based Systems,2024,284:111257. [14]WOLPERT D H,MACREADYW G.No free lunch theorems for optimization[J].IEEE Transactions on Evolutionary Computation,1997,1(1):67-82. [15]WU L,CHEN E,GUO Q,et al.Smooth Exploration System:A novel ease-of-use and specialized module for improving exploration of whale optimization algorithm[J].Knowledge-Based Systems,2023,272:110580. [16]ZAMANI H,NADIMI-SHAHRAKIM H.An evolutionary crow search algorithm equipped with interactive memory mechanism to optimize artificial neural network for disease diagnosis[J].Biomedical Signal Processing and Control,2024,90:105879. [17]WANG Z,MO Y,CUI M,et al.An improved golden jackal optimization for multilevel thresholding image segmentation[J].PloS Pne,2023,18(5):e0285211. [18]FU S,LI K,HUANG H,et al.Red-billed blue magpie optimizer:a novel metaheuristic algorithm for 2D/3D UAV path planning and engineering design problems[J].Artificial Intelligence Review,2024,57(6):1-89. [19]MIRJALILI S,GANDOMIA H.Chaotic gravitational constants for the gravitational search algorithm[J].Applied Soft Computing,2017,53:407-419. [20]HEIDARI A A,MIRJALILI S,FARIS H,et al.Harris hawksoptimization:Algorithm and applications[J].Future Generation Computer Systems,2019,97:849-872. [21]XUE J,SHEN B.Dung beetle optimizer:A new meta-heuristic algorithm for global optimization[J].The Journal of Supercomputing,2023,79(7):7305-7336. [22]CHAUHAN D,YADAV A.An adaptive artificial electric field algorithm for continuous optimization problems[J].Expert Systems,40,9(2023),e13380. [23]REZAEI F,SAFAVI H R,ABD ELAZIZ M,et al.An enhanced grey wolf optimizer with a velocity-aided global search mechanism[J].Mathematics,2022,10(3),351. [24]SEYYEDABBASI A,KIANI F,ALLAHVIRANLOO T,et al.Optimal data transmission and pathfinding for WSN and decentralized IoT systems using I-GWO and Ex-GWO algorithms[J].Alexandria Engineering Journal,2023,63:339-357. [25]LI Y,HAN T,ZHOU H,et al.A novel adaptive L-SHADE algorithm and its application in UAV swarm resource configuration problem[J].Information Sciences,2022,606:350-367. [26]DURDEV M,DESNICA E,PEKEZ J,et al.Modern swarm-based algorithms for the tension/compression spring design optimization problem[J].Annals of the Faculty of Engineering Hunedoara,2021,19(2):55-58. [27]SHAIKH F K,ZEADALLY S.Energy harvesting in wirelesssensor networks:A comprehensive review[J].Renewable and Sustainable Energy Reviews,2016,55:1041-1054. |
|
||