计算机科学 ›› 2025, Vol. 52 ›› Issue (11A): 241100005-10.doi: 10.11896/jsjkx.241100005

• 人工智能 • 上一篇    下一篇

基于混合策略的自适应红嘴蓝鹊优化算法

段博文, 殷继彬, 张航   

  1. 昆明理工大学信息工程与自动化学院 昆明 650500
  • 出版日期:2025-11-15 发布日期:2025-11-10
  • 通讯作者: 殷继彬(41868028@qq.com)
  • 作者简介:1968192531@qq.com
  • 基金资助:
    国家自然科学基金(61741206)

Adaptive Red-billed Blue Magpie Optimization Algorithm Based on Mixed Strategy

DUAN Bowen, YIN Jibin, ZHANG Hang   

  1. Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500,China
  • Online:2025-11-15 Published:2025-11-10
  • Supported by:
    National Natural Science Foundation of China(61741206).

摘要: 针对红嘴蓝鹊优化算法(Red-billed Blue Magpie Optimization Algorithm,RBMO)存在多样性迅速退化、寻优精度差、易陷入局部最优的问题,提出了一种基于混合策略的自适应红嘴蓝鹊优化算法(Adaptive Red-Billed Blue Magpie Optimization Algorithm Based on Mixed Strategy,JRBMO)。首先,引入Hammersley序列初始化种群,使初始解分布更均匀,为寻优提供基础;其次,在勘探阶段,提出自适应螺旋围捕策略,通过动态控制个体的勘探范围与方向,提高RBMO的搜索能力。在开发阶段,引入莱维飞行策略,对当前最优解进行局部扰动,增强算法局部开发能力;最后,提出自适应维度变异策略,根据种群适应度分布的变化,对个体进行维度变异,避免算法陷入局部最优。在CEC2017与CEC2019测试集上对算法性能进行评估,结果显示JRBMO均值胜率分别达到88.9%和70%,验证了JRBMO的有效性。此外,将JRBMO应用于拉(压)弹簧设计问题和三维无线传感器网络(WSN)节点覆盖问题上,JRBMO均取得了最优的结果,其中WSN节点均值覆盖率高出原算法6.3%,体现了JRBMO在实际应用中的普适性。

关键词: 红嘴蓝鹊优化算法, 自适应, Hammersley序列, 螺旋围捕, 莱维飞行, 维度变异

Abstract: Aiming at the problems of rapid degradation of diversity,poor optimization accuracy,and susceptibility to local optima in the Red billed Blue Magpie Optimization Algorithm(RBMO),a hybrid strategy based adaptive Red billed Blue Magpie Optimization Algorithm(JRBMO) is proposed.Firstly,the Hammersley sequence is introduced to initialize the population,making the initial solution distribution more uniform and providing a foundation for optimization.Secondly,during the exploration phase,an adaptive spiral capture strategy is proposed to improve the search capability of RBMO by dynamically controlling the exploration range and direction of individuals.In the exploitation phase,the Levy flight strategy is introduced to locally perturb the current optimal solution and enhance the algorithm’s local development capability.Finally,an adaptive dimension mutation strategy is proposed to perform dimension mutation on individuals based on changes in population fitness distribution,avoiding the algorithm from getting stuck in local optima.The algorithm performance was evaluated on the CEC2017 and CEC2019 test sets,and the results showed that JRBMO had average win rates of 88.9% and 70%,respectively,verifying the effectiveness of JRBMO.In addition,applying JRBMO to the tension(compression) spring design problem and the three-dimensional wireless sensor network(WSN) node coverage problem,JRBMO achieves the optimal results,in which the WSN node mean coverage is 6.3% higher than that of the original algorithm,which demonstrates the universality of JRBMO in practical applications.

Key words: Red billed blue magpie optimization algorithm, Adaptive, Hammersley sequence, Spiral capture, Lévy flight, Dimension mutation

中图分类号: 

  • TP301
[1]TALBI E G.Metaheuristics:From Design to Implementation[J].John Wiley & Sons Google Schola,2009,2:268-308.
[2]YU H,LI W,CHEN C,et al.Dynamic Gaussian bare-bones fruit fly optimizers with abandonment mechanism:method and analysis[J].Engineering with Computers,2020:1-29.
[3]GHAREHCHOPOGH F S,IBRIKCI T.An improved Africanvultures optimization algorithm using different fitness functions for multi-level thresholding image segmentation[J].Multimedia Tools and Applications,2024,83(6):16929-16975.
[4]SOOD M,VERMA S,PANCHAL V K.Optimal path planning using swarm intelligence based hybrid techniques[J].Journal of Computational and Theoretical Nanoscience,2019,16(9):3717-3727.
[5]RAJWAR K,DEEP K,DAS S.An exhaustive review of the metaheuristic algorithms for search and optimization:taxonomy,applications,and open challenges[J].Artificial Intelligence Review,2023,56(11):13187-13257.
[6]KATOCH S,CHAUHAN S S,KUMAR V.A review on genetic algorithm:past,present,and future[J].Multimedia Tools and Applications,2021,80:8091-8126.
[7]PRICE K V.Differential evolution[M]//Handbook of Optimization:From Classical to Modern Approach.Berlin,Heidelberg:Springer Berlin Heidelberg,2013:187-214.
[8]SU H,ZHAO D,HEIDARI A A,et al.RIME:A physics-based optimization[J].Neurocomputing,2023,532:183-214.
[9]MIRRASHID M,NADERPOUR H.Incomprehensible but In-telligible-in-time logics:Theory and optimization algorithm[J].Knowledge-Based Systems,2023,264:110305.
[10]MIRJALILI S,MIRJALILI S M,LEWIS A.Grey wolf optimizer[J].Advances in Engineering Software,2014,69:46-61.
[11]MAFARJA M,MIRJALILI S.Whale optimization approachesfor wrapper feature selection[J].Applied Soft Computing,2018,62:441-453.
[12]CHOPRA N,ANSARI M M.Golden jackal optimization:A novel nature-inspired optimizer for engineering applications[J].Expert Systems with Applications,2022,198:116924.
[13]ABDEL-BASSET M,MOHAMED R,ABOUHAWWASH M.Crested Porcupine Optimizer:A new nature-inspired metaheuristic[J].Knowledge-Based Systems,2024,284:111257.
[14]WOLPERT D H,MACREADYW G.No free lunch theorems for optimization[J].IEEE Transactions on Evolutionary Computation,1997,1(1):67-82.
[15]WU L,CHEN E,GUO Q,et al.Smooth Exploration System:A novel ease-of-use and specialized module for improving exploration of whale optimization algorithm[J].Knowledge-Based Systems,2023,272:110580.
[16]ZAMANI H,NADIMI-SHAHRAKIM H.An evolutionary crow search algorithm equipped with interactive memory mechanism to optimize artificial neural network for disease diagnosis[J].Biomedical Signal Processing and Control,2024,90:105879.
[17]WANG Z,MO Y,CUI M,et al.An improved golden jackal optimization for multilevel thresholding image segmentation[J].PloS Pne,2023,18(5):e0285211.
[18]FU S,LI K,HUANG H,et al.Red-billed blue magpie optimizer:a novel metaheuristic algorithm for 2D/3D UAV path planning and engineering design problems[J].Artificial Intelligence Review,2024,57(6):1-89.
[19]MIRJALILI S,GANDOMIA H.Chaotic gravitational constants for the gravitational search algorithm[J].Applied Soft Computing,2017,53:407-419.
[20]HEIDARI A A,MIRJALILI S,FARIS H,et al.Harris hawksoptimization:Algorithm and applications[J].Future Generation Computer Systems,2019,97:849-872.
[21]XUE J,SHEN B.Dung beetle optimizer:A new meta-heuristic algorithm for global optimization[J].The Journal of Supercomputing,2023,79(7):7305-7336.
[22]CHAUHAN D,YADAV A.An adaptive artificial electric field algorithm for continuous optimization problems[J].Expert Systems,40,9(2023),e13380.
[23]REZAEI F,SAFAVI H R,ABD ELAZIZ M,et al.An enhanced grey wolf optimizer with a velocity-aided global search mechanism[J].Mathematics,2022,10(3),351.
[24]SEYYEDABBASI A,KIANI F,ALLAHVIRANLOO T,et al.Optimal data transmission and pathfinding for WSN and decentralized IoT systems using I-GWO and Ex-GWO algorithms[J].Alexandria Engineering Journal,2023,63:339-357.
[25]LI Y,HAN T,ZHOU H,et al.A novel adaptive L-SHADE algorithm and its application in UAV swarm resource configuration problem[J].Information Sciences,2022,606:350-367.
[26]DURDEV M,DESNICA E,PEKEZ J,et al.Modern swarm-based algorithms for the tension/compression spring design optimization problem[J].Annals of the Faculty of Engineering Hunedoara,2021,19(2):55-58.
[27]SHAIKH F K,ZEADALLY S.Energy harvesting in wirelesssensor networks:A comprehensive review[J].Renewable and Sustainable Energy Reviews,2016,55:1041-1054.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!