计算机科学 ›› 2025, Vol. 52 ›› Issue (11A): 240800062-6.doi: 10.11896/jsjkx.240800062
邢昱阳, 王宝会
XING Yuyang, WANG Baohui
摘要: 近年来,恶意代码愈加泛滥,数量和种类均呈快速增长趋势。因此,机器学习方法被广泛用于提升对恶意代码识别和分类的效率。聚焦恶意代码多分类任务,采用静态分析方法,结合反汇编、图构造、图论特征分析等技术,对恶意代码样本的原始文件进行特征提取。在传统的CFG特征和字节码特征的基础上,提出一种指令流程图(Instruction Flow Graph,IFG)特征。将IFG特征、CFG特征和字节码特征分别用于训练机器学习模型,并进行横向对比实验。从训练效果来看:相比CFG特征,采用IFG特征,模型精确率提高5%左右;相比字节码特征,采用IFG特征,模型精确率提高0.3%,模型训练时间缩短60%以上。
中图分类号:
| [1]AV-TEST:The Independent IT-Security Institute[EB/OL].https://www.av-test.org/en/statistics/malware. [2]BHATIA T,KAUSHAL R.Malware detection in android based on dynamic analysis[C]//2017 International Conference on Cyber Security and Protection of Digital Services(Cyber Security).IEEE,2017. [3]JIANG H,TURKI T,WANG J T L.DLGraph:Malware detection using deep learning and graph embedding[C]//2018 17th IEEE International Conference on Machine Learning and Applications(ICMLA).IEEE,2018:1029-1033. [4]YANG S,LI S,CHEN W,et al.A real-time and adaptive-lear-ning malware detection method based on API-pair graph[J].IEEE Access,2020,8:208120-208135. [5]ABUSNAINA A,ABUHAMAD M,ALASMARY H,et al.Dl-fhmc:Deep learning-based fine-grained hierarchical learning approach for robust malware classification[J].IEEE Transactions on Dependable and Secure Computing,2021,19(5):3432-3447. [6]AGUIRRE J,PAPO D,BULDÚ J M.Successful strategies forcompeting networks[J].Nature Physics,2013,9(4):230-234. [7]GOYAL M,KUMAR R.Machine Learning for Malware Detection on Balanced and Imbalanced Datasets[C]//2020 International Conference on Decision Aid Sciences and Application(DASA).IEEE,2020:867-871. [8]KONG Z,XUE J,WANG Y,et al.MalFSM:Feature Subset Selection Method for Malware Family Classification[J].Chinese Journal of Electronics,2023,32(1):26-38. [9]WU Z,ZHANG J,KOU L.A Model for Malware DetectionMethod based on API call Sequence Clustering[C]//2022 9th International Conference on Dependable Systems and Their Applications(DSA).IEEE,2022:1049-1050. [10]SRIRAM S,VINAYAKUMAR R,SOWMYA V,et al.Multi-scale learning based malware variant detection using spatial pyramid pooling network[C]//IEEE INFOCOM 2020-IEEE Conference on Computer Communications Workshops(INFOCOM WKSHPS).IEEE,2020:740-745. [11]ALAM M,AKRAM A,SAEED T,et al.DeepMalware:A Deep Learning based Malware Images Classification[C]//2021 International Conference on Cyber Warfare and Security(ICCWS).IEEE,2021:93-99. |
|
||