计算机科学 ›› 2025, Vol. 52 ›› Issue (8): 162-170.doi: 10.11896/jsjkx.240700017
蒋锐, 范姝文, 王小明, 徐友云
JIANG Rui, FAN Shuwen, WANG Xiaoming, XU Youyun
摘要: 在自组织映射(Self-organizing Map,SOM)模型的训练过程中,不同类数据对权重矩阵的更新有不同作用,某一类数据对权重矩阵的更新会对其他类获胜神经元特征向量产生偏离其数据特征的影响,从而降低算法聚类精度。针对以上问题,提出一种改进的基于置信度SOM模型(Improved Confidence-based SOM Model,icSOM)。样本数据首先由K-means算法初步分类,为模型训练提供更多的数据信息;然后将预分类后的数据分别训练相互独立的SOM模型,以消除不同类之间的影响;最后在传统SOM模型基础上提出置信度矩阵概念,通过综合判断获胜神经元的置信度及其与输入数据间的欧氏距离最终得到置信神经元,根据置信神经元所属类别给数据分配聚类标签。在鸢尾花数据集(Iris)及葡萄酒数据集(Wine)上利用icSOM进行聚类分析,实验结果表明,所提算法可以更好地处理样本数据,取得了较好的聚类效果。
中图分类号:
[1]SCHANK R C.What is AI,anyway? [J].AI Magazine,1987,8(4):59. [2]MCCARTHY J.Generality in artificial intelligence [J].Communications of the ACM,1987,30(12):1030-1035. [3]SAMUEL A L.Some studies in machine learning using the game of checkers [J].IBM Journal of Research and Development,1959,3(3):210-229. [4]SAMUEL A L.Machine learning [J].The Technology Review,1959,62(1):42-45. [5]BAŞTANLAR Y,ÖZUYSAL M.Introduction to machine lear-ning [J].miRNomics:MicroRNA Biology and Computational Analysis,2014:105-128. [6]EL NAQA I,MURPHY M J.What is machine learning? [M].Springer International Publishing,2015. [7]ZHOU Z H.Machine Learning[M].Beijing:Tsinghua University Press,2016. [8]NASTESKI V.An overview of the supervised machine learning methods [J].Horizons.B,2017,4:51-62. [9]DAYAN P,SAHANI M,DEBACK G.Unsupervised learning[J].The MIT Encyclopedia of the Cognitive Sciences,1999:857-859. [10]BZDOK D,KRZYWINSKI M,ALTMAN N.Machine learning:supervised methods [J].Nature Methods,2018,15(1):5-6. [11]LAAKSONEN J,OJA E.Classification with learning k-nearest neighbors [C]//Proceedings of International Conference on Neural Networks.IEEE,1996:1480-1483. [12]LIU C X,SHI D M,SONG W J.Research thread and latest progress of the methods of dimensionality reduction in high-dimensional data[J].Journal of Statistics,2023,4(3):11-21. [13]WOLD S,ESBENSEN K,GELADI P.Principal component ana-lysis [J].Chemometrics and Intelligent Laboratory Systems,1987,2(1/2/3):37-52. [14]BAI Y X.The application of k-means in feature selection[J].Electronic Technology & Software Engineering,2018,123(1):186-187. [15]ESTER M,KRIEGEL H P,SANDER J,et al.A density-based algorithm for discovering clusters in large spatial databases with noise [J].KDD,1996,96(34):226-231. [16]KOHONEN T.The self-organizing map [J].Proceedings of the IEEE,1990,78(9):1464-1480. [17]KOHONEN T.Things you haven't heard about the self-organizing map [C]//IEEE International Conference on Neural Networks.IEEE,1993:1147-1156. [18]KOHONEN T.Exploration of very large databases by self-organizing maps [C]//Proceedings of International Conference on Neural Networks.IEEE,1997,1:1-6. [19]KOHONEN T.Essentials of the self-organizing map [J].Neural Networks,2013,37:52-65. [20]ZHOU G,YANG F,XIAO J.Study on pixel entanglement theoryfor imagery classification [J].IEEE Transactions on Geoscience and Remote Sensing,2022,60:1-18. [21]LI S,LIU F,JIAO L,et al.Self-supervised self-organizing clustering network:a novel unsupervised representation learning method [J].IEEE Transactions on Neural Networks and Lear-ning Systems,2022,35:1857-1871. [22]YAN J,ZHANG C,LI Y.A clustering method for power time series curves based on improved self-organizing map algorithm [C]//2023 IEEE 3rd International Conference on Electronic Technology,Communication and Information(ICETCI).IEEE,2023:451-455. [23]XIE D,FAN L,FU C,et al.Nonintrusive load monitoring algorithm using SOM-AdaDBSCAN [C]//2023 6th International Conference on Energy,Electrical and Power Engineering(CEEPE).IEEE,2023:905-910. [24]KHAN S,MAILEWA A B.Discover botnets in IoT sensor networks:A lightweight deep learning framework with hybrid self-organizing maps [J].Microprocessors and Microsystems,2023,97:104753. [25]BENDJAMA H,BOUHOUCHE S,AOUABDI S,et al.Monitoring of casting quality using principal component analysis and self-organizing map[J].The International Journal of Advanced Manufacturing Technology,2022,120(5):3599-3607. [26]FORT J C,PAGÉS G.About the Kohonen algorithm:strong or weak self-organization? [J].Neural Networks,1996,9(5):773-785. [27]ANDERSON E.The irises of the gaspe peninsula [J].Bulletin of American Iris Society,1935,59:2-5. [28]AEBERHARD S,COOMANS D,VEL O D.Comparative analysis of statistical pattern recognition methods in high dimensional settings [J].Pattern Recognition,1994,27(8):1065-1077. |
|