计算机科学 ›› 2025, Vol. 52 ›› Issue (11A): 241200157-7.doi: 10.11896/jsjkx.241200157
蒋亚坤, 林旭
JIANG Yakun, LIN Xu
摘要: 随着电力系统信息化、网络化、智能化建设的不断推进,电力监控系统面临着日益严峻的网络安全威胁。综合考虑网络资产安全风险、用户行为、业务特征等多方面因素,对电力监控系统网络所涵盖的多源数据进行全面深入分析显得尤为重要。据此提出了电力监控系统多源数据清洗方法及入侵检测方法,利用改进最大相关-最小冗余算法对电力监控系统网络的多源安全数据特征进行选择,保留合适的安全数据特征,利用网络入侵检测模型实现多源网络安全数据的检测与分类,有效解决电力监控系统多源数据特征属性复杂导致后期模型分类准确度下降等问题。仿真实验证明,所提出的多源数据特征选择方法与入侵检测算法对电力监控系统攻击的检测率与分类准确率均有明显提高。
中图分类号:
| [1]SONG L,FAN Y,LIU M,et al.State estimation method of anew energy power system based on SC-DNN and multi-source data fusion[J].Power System Protection and Control,2023,51:177-187. [2]WU B,HU Y.Analysis of substation joint safety control system and model based on multi-source heterogeneous data fusion[J].IEEE Access,2023,11:35281-35297. [3]SAHU A,MAO Z,WLAZLO P,et al.Multi-source data fusion for cyberattack detection in power systems[J].arXiv:2101.06897. [4]GUO H,LIU Y,XU L,et al.Recognition of demand response potential resident users based on multi-source heterogeneous data association rule analysis[J].Dianwang Jishu/Power System Technology,2023,47(5):1950-1960. [5]HE J,JIANG W,LIU G,et al.Advanced monitoring infrastructure system architecture for massive multi-source data[C]//2023 IEEE 13th International Conference on Electronics Information and Emergency Communication(ICEIEC).IEEE,2023:148-152. [6]JIANG L,WANG W,ZHENG S,et al.A novel data edge mining algorithm with euclidean distance weighted optimization for integrated energy station[C]//2023 IEEE 7th Information Technology and Mechatronics Engineering Conference(ITOEC).IEEE,2023,7:67-71. [7]PARK J K,LEE H,KIM W,et al.Degradation feature extraction method for prognostics of an extruder screw using multi-source monitoring data[J].Sensors,2023,23(2):637. [8]LI Y,YU X.The multi-mode FBN multi-source heterogeneous data fusion technology based on AES algorithm[C]//2023 IEEE 5th International Conference on Civil Aviation Safety and Information Technology(ICCASIT).IEEE,2023:1198-1202. [9]DONG Y,WEN C,WANG Z.A motor bearing fault diagnosis method based on multi-source data and one-dimensional lightweight convolution neural network[C]//Proceedings of the Institution of Mechanical Engineers,Part I:Journal of Systems and Control Engineering.2023:272-283. [10]XIONG Z,LI W,CAI Z.Federated generative model on multi-source heterogeneous data in iot[C]//Proceedings of the AAAI Conference on Artificial Intelligence.202310537-10545. [11]ANKITDESHPANDE Y,KARTHI R.Development of intru-sion detection system using deep learning for classifying attacks in power systems[C]//Soft Computing:Theories and Applications(SoCTA 2019).Singapore:Springer,2020:755-766. [12]HAN Y,WANG Y,CAO Y,et al.A novel wrapped feature selection framework for developing power system intrusion detection based on machine learning methods[J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2023,53(11):7066-7076. [13]DASGUPTA R,PRAMANIK M,MITRA P,et al.Intrusion detection for power grid:a review[J].International Journal of Information Security,2024,23(2):1317-1329. [14]LIU J Q,WANG R,CAO J W.An overview of new informationtransmission methods for power systems[J].Journal of Northeast Dianli University,2024,44(4):1-8,76. [15]ZHANG D,ZHANG Y,ZANG X X.Anomalous Intrusion Detection Method for Surveillance Video Based on Self-Organising Mathematical Models[J].Journal of Northeast Dianli University,2022,42(4):63-69. [16]DURAIRA D,VENKATASAMY T K,MEHBODNIYA A,et al.Intrusion detection and mitigation of attacks in microgrid using enhanced deep belief network[J].Energy Sources,Part A:Recovery,Utilization,and Environmental Effects,2024,46(1):1519-1541. [17]RAJASOUNDARAN S,KUMAR S V N S,SELVI M,et al.Secure and optimized intrusion detection scheme using LSTM-MAC principles for underwater wireless sensor networks[J].Wireless Networks,2024,30(1):209-231. [18]NUGROHO S A,TAHA A F,QI J J.Robust dynamic state estimation of synchronous machines with asymptotic state estimation error performance guarantees[J].IEEE Transactions on Power Systems,2020,35(3):1923-1935. |
|
||