计算机科学 ›› 2025, Vol. 52 ›› Issue (11A): 241200156-12.doi: 10.11896/jsjkx.241200156

• 人工智能 • 上一篇    下一篇

生成式人工智能在自然语言处理中的应用综述

袁天浩, 王拥军, 王宝山, 王中原   

  1. 北京航空航天大学数学科学学院 北京 102206
  • 出版日期:2025-11-15 发布日期:2025-11-10
  • 通讯作者: 王拥军(Wangyj@buaa.edu.cn)
  • 作者简介:sy2409152@buaa.edu.cn
  • 基金资助:
    国家自然科学基金(12371016,11871083)

Review of Artificial Intelligence Generated Content Applications in Natural Language Processing

YUAN Tianhao, WANG Yongjun, WANG Baoshan, WANG Zhongyuan   

  1. School of Mathematical Sciences,Beihang University,Beijing 102206,China
  • Online:2025-11-15 Published:2025-11-10
  • Supported by:
    National Natural Science Foundation of China(12371016,11871083).

摘要: 随着大语言模型近年来的爆炸性发展,生成式人工智能(Artificial Intelligence Generated Content,AIGC)在自然语言处理(Natural Language Processing,NLP)中的应用成为人工智能领域的研究热点。区别于传统的分析与预测模型,生成式模型近年来在自然语言生成(Natural Language Generation,NLG)领域取得了显著进展,包括循环神经网络、长短时记忆网络、生成对抗网络、Transformer模型、变分自动编码器和扩散模型等。这些模型在自然语言领域的不同生成任务中都有着广泛的应用。得益于大语言模型的快速发展,生成式人工智能在问答系统、文本摘要、机器翻译、信息抽取等任务中取得了突出成果。然而,尽管生成式人工智能在自然语言处理中已取得巨大进展,但仍面临诸多挑战。未来,需要进一步优化模型的训练过程,提高其在多任务和跨领域应用中的泛化能力,同时解决生成内容的质量和安全性问题,以满足不断变化的新兴任务的需求。

关键词: 生成式人工智能, 自然语言处理, Transformer模型, 大语言模型, 跨领域应用

Abstract: With the explosive development of large language models in recent years,the applications of artificial intelligence ge-nerated content in natural language processing has become a research hotspot in the field of artificial intelligence.Unlike traditional analysis and prediction models,generative models have made significant progress in the field of natural language generation in recent years,including recurrent neural networks,long short-term memory networks,generative adversarial networks,Transformer models,variational autoencoders,and diffusion models.These models have found wide applications in various generation tasks within the natural language field.Owing to the rapid development of large language models,artificial intelligence generated content has achieved remarkable results in tasks such as question answering systems,text summarization,machine translation,information extraction,and other related tasks.However,despite the tremendous progress artificial intelligence generated content has made in natural language processing,many challenges still remain.In the future,it is necessary to further optimize the training process of related models,improve their generalization ability in multi-task and interdisciplinary applications,and address issues related to the quality and safety of generated content to meet the evolving demands of emerging tasks.

Key words: Artificial intelligence generated content, Natural language processing, Transformer model, Large language model, Interdisciplinary applications

中图分类号: 

  • TP391
[1]CHE L,ZHANG Z Q,ZHOU J J,et al.The research status and development trends of generative artificial intelligence[J].Science & Technology Review,2024,42(12):35-43.
[2]ZAREMBA W.Recurrent neural network regularization[J].arXiv:1409.2329,2014.
[3]HOCHREITER S.Long Short-term Memory[J].Neural Computation,1997,9(8):1735-1780.
[4]SCHUSTER M,PALIWAL K K.Bidirectional recurrent neural networks[J].IEEE Transactions on Signal Processing,1997,45(11):2673-2681.
[5]BECK M,PÖPPEL K,SPANRING M,et al.xLSTM:Extended Long Short-Term Memory[J].arXiv:2405.04517,2024.
[6]GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Ge-nerative adversarial nets[C]//Advances in Neural Information Processing Systems.2014.
[7]DENTON E L,CHINTALA S,FERGUS R.Deep generativeimage models using a laplacian pyramid of adversarial networks[C]//Advances in Neural Information Processing Systems.2015.
[8]YU L,ZHANG W,WANG J,et al.Seqgan:Sequence generative adversarial nets with policy gradient[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2017.
[9]ZHANG Y,GAN Z,CARIN L.Generating text via adversarial training[C]//NIPS Workshop on Adversarial Training.2016:21-32.
[10]VASWANI A.Attention is all you need[C]//Advances in Neural Information Processing Systems.2017.
[11]BAHDANAU D.Neural machine translation by jointly learning to align and translate[J].arXiv:1409.0473,2014.
[12]KIM Y,DENTON C,HOANG L,et al.Structured attentionnetworks[C]//International Conference on Learning Representations.2017.
[13]DEVLIN J,CHANG M W,LEE K,et al Bert:Pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.ACL,2019:4171-4186.
[14]LIU Z,LIN W,SHI Y,et al.Roberta:A robustly optimized bert pretraining approach[C]//Proceedings of the 20th Chinese National Conference on Computational Linguistics.ACL,2021:1218-1227.
[15]XUE L,CONSTANT N,ROBERTS A,et al.mt5:A massively multilingual pre-trained text-to-text transformer[C]//Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.ACL,2021:483-498.
[16]LAN Z.ALbert:A lite bert for self-supervised learning of language representations[C]//International Conference on Lear-ning Representations.2019.
[17]CLARK K.Electra:Pre-training text encoders as discriminators rather than generators[J].arXiv:2003.10555,2020.
[18]HE P,LIU X,GAO J,et al.Deberta:Decoding-enhanced bertwith disentangled attention[J].arXiv:2006.03654,2020.
[19]ZAHEER M,GURUGANESH G,DUBEY K A,et al.Big bird:Transformers for longer sequences[J].Advances in Neural Information Processing Systems,2020,33:17283-17297.
[20]SUN Y,WANG S,FENG S,et al.Ernie 3.0:Large-scale knowledge enhanced pre-training for language understanding and generation[J].arXiv:2107.02137,2021.
[21]FENG F,YANG Y,CER D,et al.Language-agnostic BERTsentence embedding[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics.ACL,2022:878-891.
[22]GAO T,YAO X,CHEN D.SimCSE:Simple contrastive learning of sentence embeddings[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing.ACL,2021:6894-6910.
[23]LEE J,YOON W,KIM S,et al.BioBERT:a pre-trained biome-dical language representation model for biomedical text mining[J].Bioinformatics,2020,36(4):1234-1240.
[24]LIU Z,HUANG D,HUANG K,et al.Finbert:A pre-trained financial language representation model for financial text mining[C]//Proceedings of the Twenty-ninth International Conference on International Joint Conferences on Artificial Intelligence.2021:4513-4519.
[25]RADFORD A.Improving language understanding by generative pre-training[J].2018.
[26]RADFORD A,WU J,CHILD R,et al.Language models are unsupervised multitask learners[J].OpenAI Blog,2019,1(8):9.
[27]BROWN T B,MANN B,RYDER N,et al.Language models are few-shot learners[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems.Red Hook,NY:Curran Associates Inc.,2020:1877-1901.
[28]ACHIAM J,ADLER S,AGARWAL S,et al.Gpt-4 technical report[R].GPT-4 Technical Report,2023.
[29]KINGMA D P.Auto-encoding variational bayes[J].arXiv:1312.6114,2013.
[30]FABIUS O,VAN AMERSFOORT J R.Variational recurrentauto-encoders[C]//ICASSP 2020-2020 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP).IEEE,2019:3202-3206.
[31]LIN S,CLARK R,BIRKE R,et al.Anomaly detection for time series using vae-lstm hybrid model[C]//2020 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP 2020).IEEE,2020:4322-4326.
[32]HO J,JAIN A,ABBEEL P.Denoising diffusion probabilisticmodels[J].Advances in Neural Information Processing Systems,2020,33:6840-6851.
[33]LI Y,ZHOU K,ZHAO W X,et al.Diffusion models for non-autoregressive text generation:A survey[C]//Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence(IJCAI ’23).2023:6692-6701.
[34]XIANG J,LIU Z,LIU H,et al.Diffusion Dialog:A DiffusionModel for Diverse Dialog Generation with Latent Space[C]//Proceedings of the 2024 Joint International Conference on Computational Linguistics,Language Resources and Evaluation (LREC-COLING 2024).ACL,2024:4912-4921.
[35]LOVELACE J,KISHORE V,CHEN Y W,et al.DiffusionGuided Language Modeling[C]//Findings of the Association for Computational Linguistics:ACL 2024.ACL,2024:14936-14952.
[36]SANG E F,DE MEULDER F.Introduction to the CoNLL-2003 shared task:Language-independent named entity recognition[C]//Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003.ACL,2003:142-147.
[37]RAJPURKAR P,ZHANG J,LOPYREV K,et al.SQuAD:100,000+ Questions for Machine Comprehension of Text[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing.ACL,2016:2383-2392.
[38]YIH W,RICHARDSON M,MEEK C,et al.The value of semantic parse labeling for knowledge base question answering[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics.2016:201-206.
[39]TALMOR A,BERANT J.The web as a knowledge-base for answering complex questions[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.ACL,2018:641-651.
[40]GLIWA B,MOCHOL I,BIESEK M,et al.SAMSum corpus:A human-annotated dialogue dataset for abstractive summarization[C]//Proceedings of the 2nd Workshop on New Frontiers in Summarization.ACL,2019:70-79.
[41]ZHONG M,YIN D,YU T,et al.QMSum:A new benchmark for query-based multi-domain meeting summarization[C]//Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.ACL,2021:5905-5921.
[42]NALLAPATI R,ZHOU B,GULCEHRE C,et al.Abstractive text summarization using sequence-to-sequence rnns and beyond[C]//Proceedings of the 20th SIGNLL Conference on Computational Natural Language Learning.ACL,2016:280-290.
[43]GOYAL N,GAO C,CHAUDHARY V,et al.The flores-101evaluation benchmark for low-resource and multilingual machine translation[J].Transactions of the Association for Computational Linguistics,2022,10:522-538.
[44]KOCMI T,BAWDEN R,BOJAR O,et al.Findings of the 2022 conference on machine translation(WMT22)[C]//Proceedings of the Seventh Conference on Machine Translation(WMT).2022:1-45.
[45]SCARTON C,FORCADA M L,ESPLA-GOMIS M,et al.Estimating post-editing effort:a study on human judgements,task-based and reference-based metrics of MT quality[C]//Proceedings of the 16th International Conference on Spoken Language Translation,Hong Kong.Association for Computational Linguistics.ACL,2019.
[46]CONNEAU A,RINOTT R,LAMPLE G,et al.XNLI:Evaluating cross-lingual sentence representations[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.ACL,2018:2475-2485.
[47]LAN Y,HE G,JIANG J,et al.A survey on complex knowledge base question answering:Methods,challenges and solutions[J].IEEE Transactions on Knowledge and Data Engineering,2021,35(11):11196-11215.
[48]JIN W,ZHAO B,YU H,et al.Improving embedded knowledge graph multi-hop question answering by introducing relational chain reasoning[J].Data Mining and Knowledge Discovery,2022,37(1):255-288.
[49]HE G,LAN Y,JIANG J,et al.Improving multi-hop knowledge base question answering by learning intermediate supervision signals[C]//Proceedings of the 14th ACM International Confe-rence on Web Search and Data Mining.2021:553-561.
[50]SHI J,CAO S,HOU L,et al.Transfernet:An effective andtransparent framework for multi-hop question answering over relation graph[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing ACL.2024:4149-4158.
[51]ZHANG J,ZHANG X,YU J,et al.Subgraph retrieval enhanced model for multi-hop knowledge base question answering [C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics.ACL,2022:5773-5784.
[52]JIANG J,ZHOU K,ZHAO W X,et al.Unikgqa:Unified retrieval and reasoning for solving multi-hop question answering over knowledge graph[C]//International Conference on Lear-ning Representations.2023.
[53]JIANG J,ZHOU K,ZHAO X,et al.Reasoninglm:Enablingstructural subgraph reasoning in pre-trained language models for question answering over knowledge graph[C]//Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing.ACL,2023:3721-3735.
[54]LUO L,LI Y F,HAFFARI G,et al.Reasoning on graphs:Faithful and interpretable large language model reasoning[C]//International Conference on Learning Representations.2024.
[55]SUN J,XU C,TANG L,et al.Think-on-graph:Deep and re-sponsible reasoning of large language model with knowledge graph[C]//International Conference on Learning Representations.2024.
[56]LUO H,TANG Z,PENG S,et al.Chatkbqa:A generate-then-retrieve framework for knowledge base question answering with fine-tuned large language models[C]//Findings of the Association for Computational Linguistics:ACL 2024.ACL,2024:2039-2056.
[57]JIANG J,ZHOU K,DONG Z,et al.Structgpt:A general framework for large language model to reason over structured data[C]//Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing.ACL,2023:9237-9251.
[58]LIU X,YU H,ZHANG H,et al.Agentbench:Evaluating llms as agents[C]//International Conference on Learning Representations.2024.
[59]CHENG S,ZHUANG Z,XU Y,et al.Call Me When Necessary:LLMs can Efficiently and Faithfully Reason over Structured Environments[C]//Findings of the Association for Computational Linguistics:ACL 2024.ACL,2024:4275-4295.
[60]CHEN X,JIANG J Y,CHANG W C,et al.MinPrompt:Graph-based minimal prompt data augmentation for few-shot question answering[C]//Association for Computational Linguistics.2024:254-266.
[61]TANG L,LI J,FANTUS S.Medical artificial intelligence eth-ics:a systematic review of empirical studies[J].Digital Health,2023,9:20552076231186064.
[62]REN F,GUO,X,PENG X,et al.A Survey of Spoken Language Understanding in Medical Field[J].Journal of Chinese Information Processing,2024,38(1):24-35.
[63]WU X,ZHANG H,LIAO H.Literature Review of Doctor Recommendation Methods and Applications for Consultation Platforms[J/OL].Computer Science,1-21[2024-11-27].http://kns.cnki.net/kcms/detail/50.1075.TP.20241022.1549.035.html.
[64]SRIVASTAVA S,SHARMA G.OmniVec2-A Novel Trans-former based Network for Large Scale Multimodal and Multitask Learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2024:27412-27424.
[65]ROHDE T,WU X,LIU Y.Hierarchical Learning for Generationwith Long Source Sequences[J].arXiv:2104.07545,2020.
[66]BUDAGAM D,KJ S,KUMAR A,et al.Hierarchical Prompting Taxonomy:A Universal Evaluation Framework for Large Language Models[J].arXiv:2406.12644,2024.
[67]XU L,KARIM M A,DINGLIWAL S,et al.Salient Information Prompting to Steer Content in Prompt-based Abstractive Summarization[C]//EMNLP.2024:35-49.
[68]HE H,LIU Q,XU L,et al.CriSPO:Multi-Aspect Critique-Suggestion-guided Automatic Prompt Optimization for Text Generation[J].arXiv:2410.02748,2024.
[69]LIU J,ZOU Y,ZHANG H,et al.Topic-aware contrastive learning for abstractive dialogue summarization[C]//Findings of the Association for Computational Linguistics:EMNLP 2021.ACL,2021:1229-1243.
[70]KIM S,JOO S J,CHAE H,et al.Mind the gap! injecting commonsense knowledge for abstractive dialogue summarization[C]//Proceedings of the 29th International Conference on Computational Linguistics.ACL,2022:6285-6300.
[71]LIU J,ZOU Y,ZHANG H,et al.Topic-aware contrastive learning for abstractive dialogue summarization[C]//Findings of the Association for Computational Linguistics:EMNLP 2021.ACL,2021:1229-1243.
[72]ZHAO Y,KHALMAN M,JOSHI R,et al.Calibrating sequence likelihood improves conditional language generation[C]//International Conference on Learning Representations.2022.
[73]ZHANG X,LIU Y,WANG X,et al.Momentum calibration for text generation[J].arXiv:2212.04257,2022.
[74]WANG B,LIU Z,CHEN N F.Instructive dialogue summarization with query aggregations[C]//Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing.ACL,2023:7630-7653.
[75]LIN C Y.Rouge:A package for automatic evaluation of summaries[C]//Text Summarization Branches Out.2004:74-81.
[76]WANG P,ZHANG C,QI F,et al.Pgnet:Real-time arbitrarily-shaped text spotting with point gathering network[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2021:2782-2790.
[77]LEWIS M,LIU Y,GOYAL N,et al.BART:Denoising se-quence-to-sequence pre-training for natural language generation,translation,and comprehension[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.ACL,2020:7871-7880.
[78]HUANG W,XIAO T,LIU Q,et al.HMNet:a hierarchicalmulti-modal network for educational video concept prediction[J].International Journal of Machine Learning and Cyberne-tics,2023,14(9):2913-2924.
[79]LIU C Y,ZHOU C,WU J,et al.CPMF:A collective pairwise matrix factorization model for upcoming event recommendation[C]//2017 International Joint Conference on Neural Networks(IJCNN).IEEE,2017:1532-1539.
[80]DU X,LI S,JI H.Dynamic global memory for document-level argument extraction[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics.ACL,2022:5264-5275.
[81]REN Y,CAO Y,GUO P,et al.Retrieve-and-sample:Document-level event argument extraction via hybrid retrieval augmentation[C]//Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics.2023:293-306.
[82]WANG X,GAO T,ZHU Z,et al.KEPLER:A unified model for knowledge embedding and pre-trained language representation[J].Transactions of the Association for Computational Linguistics,2021,9:176-194.
[83]KOCHSIEK A,SAXENA A,NAIR I,et al.Friendly neighbors:Contextualized sequence-to-sequence link prediction[C]//Proceedings of the 8th Workshop on Representation Learning for NLP (RepL4NLP 2023).ACL,2023:131-138.
[84]WANG L,ZHAO W,WEI Z,et al.SimKGC:Simple contrastive knowledge graph completion with pre-trained language models[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics.ACL,2022:4281-4294.
[85]SAXENA A,KOCHSIEK A,GEMULLA R.Sequence-to-se-quence knowledge graph completion and question answering[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics.ACL,2022:2814-2828.
[86]WANG K,XU Y,WU Z,et al.LLM as Prompter:Low-resource Inductive Reasoning on Arbitrary Knowledge Graphs[C]//Findings of the Association for Computational Linguistics:ACL 2024.ACL,2024:3742-3759.
[87]STAHLBERG F.Neural machine translation:A review[J].Journal of Artificial Intelligence Research,2020,69:343-418.
[88]FAN A,BHOSALE S,SCHWENK H,et al.Beyond english-centric multilingual machine translation[J].Journal of Machine Learning Research,2021,22(107):1-48.
[89]ZHU W,LIU H,DONG Q,et al.Multilingual machine translation with large language models:Empirical results and analysis[C]//Findings of the Association for Computational Linguistics:NAACL 2024.ACL,2024:2765-2781.
[90]FAN A,BHOSALE S,SCHWENK H,et al.Beyond english-centric multilingual machine translation[J].Journal of Machine Learning Research,2021,22(107):1-48.
[91]ZHANG S,ROLLER S,GOYAL N,et al.Opt:Open pre-trained transformer language models[J].arXiv:2205.01068,2022.
[92]ALMAZROUEI E,ALOBEIDLI H,ALSHAMSI A,et al.Thefalcon series of open language models[J].arXiv:2311.16867,2023.
[93]TOUVRON H,MARTIN L,STONE K,et al.Llama 2:Openfoundation and fine-tuned chat models[J].arXiv:2307.09288,2023.
[94]GAO X,GONG P,LIU J,et al.COMT Val158Met polymor-phism influences the susceptibility to framing in decision-making:OFC-amygdala functional connectivity as a mediator[J].Human Brain Mapping,2016,37(5):1880-1892.
[95]PAPINESI K.Bleu:A method for automatic evaluation of machine translation[C]//Proceedings of 40th Actual Meeting of the Association for Computational Linguistics(ACL),2002.2002:311-318.
[96]NLLB Team,COSTA-JUSS M R,CROSS J,et al.No language left behind:Scaling human-centered machine translation(2022)[J].arXiv:2207.04672,2022.
[97]PELOFSKE E,URIAS V,LIEBROCK L M.Automated Multi-Language to English Machine Translation Using Generative Pre-Trained Transformers[J].arXiv:2404.14680,2024.
[98]WANG Y,BAI J,HUANG R,et al.Speech-to-Speech Translation with Discrete-Unit-Based Style Transfer[C]//Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics.ACL,2023:34-41.
[99]FRID-ADAR M,KLANG E,AMITAI M,et al.Synthetic data augmentation using GAN for improved liver lesion classification[C]//2018 IEEE 15th International Symposium on Biomedical Imaging(ISBI 2018).IEEE,2018:289-293.
[100]WANG Q,GAO J,LIN W,et al.Learning from synthetic data for crowd counting in the wild[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:8198-8207.
[101]HAN J,WANG Q,GUO Z,et al.Disentangled Learning with Synthetic Parallel Data for Text Style Transfer[C]//Procee-dings of the 62nd Annual Meeting of the Association for Computational Linguistics.2024:15187-15201.
[102]GU A,DAO T.Mamba:Linear-time sequence modeling with selective state spaces[C]//International Conference on Learning Representations.2024.
[103]LIU Z,WANG Y,VAIDYA S,et al.Kan:Kolmogorov-arnold networks[C]//International Conference on Learning Representations.2025.
[104]SUN Y,LI X,DALAL K,et al.Learning to(learn at test time):Rnns with expressive hidden states[C]//International Confe-rence on Learning Representations.2025.
[105]HU Y,CHEN C,YANG C H H,et al.GenTranslate:LargeLanguage Models are Generative Multilingual Speech and Machine Translators[C]//Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics.ACL,2024:74-90.
[106]TIAN Y,XIA F,SONG Y.Dialogue summarization with mixture of experts based on large language models[C]//Procee-dings of the 62nd Annual Meeting of the Association for Computational Linguistics.2024:7143-7155.
[107]LI Z,ZENG Y,ZUO Y,et al.KnowCoder:Coding Structured Knowledge into LLMs for Universal Information Extraction[C]//Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics.ACL,2024:8758-8779.
[108]PATEL A,RAFFEL C,CALLISON-BURCH C.DataDreamer:A Tool for Synthetic Data Generation and Reproducible LLM Workflows[C]//Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics.ACL,2024:3781-3799.
[109]CZINCZOLL T,HÖNES C,SCHALL M,et al.NextLevel-BERT:Investigating Masked Language Modeling with Higher-Level Representations for Long Documents[C]//Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics.ACL,2024:4656-4666.
[110]STN A,ARYABUMI V,YONG Z X,et al.Aya model:An instruction finetuned open-access multilingual language model[C]//Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics.ACL,2024:15894-15939.
[111]YULIANTO A,SUPRIATNANINGSIH R.Google translatevs. DeepL:a quantitative evaluation of close-language pair translation(french to english)[J].Asian Journal of English Language and Pedagogy,2021,9(2):109-127.
[112]LV L,XIE J,ZHENG S,et al.Research Status and Trend ofGenerative Artificial Intelligence Applied to Education in China-Visualization Analysis Based on CiteSpace[J].Advances in Education,2024,14:655.
[113]CILLO P,RUBERA G.Generative AI in innovation and marketing processes:A roadmap of research opportunities[J].Journal of the Academy of Marketing Science,2025,53:684-701.
[114]MITA M,MURAKAMI S,KATO A,et al.Striking Gold in Advertising:Standardization and Exploration of Ad Text Generation[C]//Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics.2024:955-972.
[115]ZACK T,LEHMAN E,SUZGUN M,et al.Assessing the potential of GPT-4 to perpetuate racial and gender biases in health care:a model evaluation study[J].The Lancet Digital Health,2024,6(1):e12-e22.
[116]SCHNEIDER J.Explainable generative AI(GenXAI):A sur-vey,conceptualization,and research agenda[J].Artificial Intelligence Review,2024,57(11):289.
[117]DABIS A,CSKI C.AI and ethics:Investigating the first policy responses of higher education institutions to the challenge of generative AI[J].Humanities and Social Sciences Communications,2024,11(1):1-13.
[118]ZHENG Z,LU J,WANG L,et al.Cross-scale systematic learning for social big data:theory and methods[J].Scientia Sinica(Informationis),2024,54(9):2083-2097.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!