计算机科学 ›› 2026, Vol. 53 ›› Issue (1): 278-284.doi: 10.11896/jsjkx.250100046
陈千1, 成凯璇1, 郭鑫1, 张晓霞2, 王素格1, 李艳红1
CHEN Qian1, CHENG Kaixuan1, GUO Xin1, ZHANG Xiaoxia2, WANG Suge1, LI Yanhong1
摘要: 近年来,提示学习在自然语言处理领域得到了广泛应用。据调研,论元角色与文本中的主题往往有高度的语义相关性,且现有的提示调优方法忽略了实体信息和论元之间的交互。为此,提出一种融合主题和实体嵌入的双向提示调优事件论元抽取模型(TEPEAE)。首先,使用主题模型提取主题特征并进行主题嵌入化表示;其次,基于触发词、论元和实体信息构建提示模板,并将主题嵌入融入模板;然后,利用掩码语言模型预测每个实体的角色标签;最后,将标签从标签词空间映射到论元角色空间。在ACE2005-EN和ERE-EN数据集上的实验结果表明,TEPEAE优于基线模型,F1值分别达到79.53%和78.60%,验证了TEPEAE的有效性。此外,其在低资源场景下依然展现出卓越的性能,进一步证明其具有更强的鲁棒性。
中图分类号:
| [1]HU R J,ZHOU H,LIU H,et al.Survey on Document-LevelEvent Extraction Based on Deep Learning[J].Computer Engineering and Applications,2022,58(24):47-60. [2]WADDEN D,WENNBERG U,LUAN Y,et al.Entity,relation,and event extraction with contextualized span representations[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing.2019:5783-5788. [3]PAOLINI G,ATHIWARATKUN B,KRONE J,et al.Structured prediction as translation between augmented natural languages[J].arXiv:2101.05779,2021. [4]WANG X,WANG Z,HAN X,et al.HMEAE:Hierarchicalmodular event argument extraction[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing.2019:5777-5783. [5]LU Y,LIN H,XU J,et al.Text2Event:Controllable sequence-to-structure generation for end-to-end event extraction[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing.2021:2795-2806. [6]CUI J M,LI D M,TIAN X,et al.Survey on Prompt Learning[J].Computer Engineering and Applications,2024,60(23):1-27. [7]MA Y,WANG Z,CAO Y,et al.Prompt for extraction? PAIE:Prompting argument interaction for event argument extraction[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics.2022:6759-6774. [8]LIN Y,JI H,HUANG F,et al.A joint neural model for information extraction with global features[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.2020:7999-8009. [9]DU X,CARDIE C.Event extraction by answering(almost) na-tural questions[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing.2020:671-683. [10]LI F,PENG W,CHEN Y,et al.Event extraction as multi-turn question answering[C]//Findings of the Association for Computational Linguistics.2020:829-838. [11]LI S,JI H,HAN J.Document-level event argument extractionby conditional generation[C]//Proceedings of the 2021 Confe-rence of the North American Chapter of the Association for Computational Linguistics.2021:894-908. [12]HSU H,HUANG K H,BOSCHEE E,et al. Degree:A data-efficient generative event extraction model[C]//Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics.2022:1890-1908. [13]HE Y,HU J,TANG B.Revisiting event argument extraction:can EAE models learn better when being aware of event co-occurrences?[C]//Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics.2023:12542-12556. [14]HSU I H,XIE Z,HUANG K H,et al.AMPERE:AMR-Aware Prefix for Generation-Based Event Argument Extraction Model[C]//Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics.2023:10976-10993. [15]DAI L,WANG B,XIANG W,et al.Bidirectional iterativeprompt-tuning for event argument extraction[C]//Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing.2022:6251-6263. [16]DEVLIN J,CHANG M W,LEE K,et al. BERT:Pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics.2019:4171-4186. [17]LIU Y,OTT M,GOYAL N,et al.Roberta:A robustly opti-mized bert pretraining approach[J].arXiv:1907.116 92,2019. [18]MENG Z,LIU T,ZHANG H,et al.CEAN:Contrastive event aggregation network with LLM-based augmentation for event extraction[C]//Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics.2024:321-333. [19]YANG Y,GUO J Y,SHUANG K,et al.Scented-EAE:Stage-Customized Entity Type Embedding for Event Argument Extraction[C]//Findings of the Association for Computational Linguistics.2024:5222-5235. |
|
||