计算机科学 ›› 2025, Vol. 52 ›› Issue (7): 161-169.doi: 10.11896/jsjkx.240500134
庄建军1,2, 万理1
ZHUANG Jianjun1,2, WAN Li1
摘要: 乳腺超声图像中病变的边界具有不确定性且形态不一,原始U2-Net存在参数量大的问题,对此提出一种结合模糊逻辑的轻量化改进U2-Net乳腺超声病变分割方法SCF U2-Net。利用模糊逻辑对特征图像素进行模糊化并计算不确定度值,与输入特征图相乘来降低图像的模糊性,有效解决了边界的不确定性问题。结合深度可分离卷积和扩张卷积,对残差U型模块(ReSidual U-blocks,RSU)进行改进,以减少模型参数量,提高分割效率。针对乳腺病变形态不一的问题,在解码阶段嵌入坐标注意力机制,加强感兴趣区域的信息提取能力,提高分割精度。经BUSI数据集测试,Dice和IoU分别为0.8975和0.8328,参数量降低了90%,推理速度是原来的1.9倍。与3种主流语义分割模型相比,所提算法的分割性能更优;与两种轻量化分割模型相比,在参数规模相当的情况下分割性能优势明显,具有良好的临床应用价值。
中图分类号:
[1]SIEGEL R L,KRATZER T B,GIAQUINTO A N,et al.Cancer statistics[J].CA:A Cancer Journal of Clinicians,2025,75(1):10. [2]MAHAJAN V,VENUGOPAL V.Audit of artificial intelligence algorithms and its impact in relieving shortage of specialist doctors[M]//Artificial Intelligence:Applications in Healthcare Delivery.2020:207-221. [3]LYU W Q.Medical artificial intelligence based on fuzzy logic:Opening the dimension of morality[J].Chinese Journal of Medical Ethics,2024,37(1):32-38. [4]KERAMIDAS E G,IAKOVIDIS D K,MAROULIS D,et al.Efficient and effective ultrasound image analysis scheme for thyroid nodule detection[C]//ICIAR 2007.Berlin:Springer,2007:1052-1060. [5]HUANG Y L,CHEN D R.Watershed segmentation for breast tumor in 2-D sonography[J].Ultrasound in Medicine and Biology,2004,30(5):625-632. [6]JIANG P,PENG J,ZHANG G,et al.Learning-based automatic breast tumor detection and segmentation in ultrasound images[C]//2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).IEEE,2012:1587-1590. [7]HUANG Q H,LEE S Y,LIU L Z,et al.A robust graph-basedsegmentation method for breast tumors in ultrasound images[J].Ultrasonics,2012,52(2):266-275. [8]SHAN J,CHENG H D,WANG Y.A novel segmentation me-thod for breast ultrasound images based on neutrosophic l-means clustering[J].Medical Physics,2012,39(9):5669-5682. [9]ABDEL M,MELENDEZ J,MORENO A,et al.Breast tumorclassification in ultrasound images using texture analysis and super-resolution methods[J].Engineering Applications of Artificial Intelligence,2017,59:84-92. [10]LONG J,SHELHAMER E,DARRELL T.Fully convolutional networks for semantic segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(4):640-651. [11]HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition.2016:770-778. [12]RONNEBERGER O,FISCHER P,BROX T.U-Net:convolu-tional networks for biomedical image segmentation[C]//18th International Conference on Medical Image Computing and Computer-Assisted Intervention.Cham:Springer,2015:234-241. [13]ZHOU T,DONG Y L,HUO B Q,et al.U-Net and its applications in medical image segmentation:a review[J].Journal of Image and Graphics,2021,26(9):2058-2077. [14]BYRA M,JAROSIK P,SZUBERT A,et al.Breast mass segmentation in ultrasound with selective kernel U-Net convolutional neural network[J].Biomedical Signal Processing and Control,2020,61:102027. [15]HUANG R,LIN M,DOU H,et al.Boundary-rendering network for breast lesion segmentation in ultrasound images[J].Medical Image Analysis,2022,80:102478. [16]ZHANG X F,ZHANG S,ZHANG D H,et al.Group Attention-based Medical Image Segmentation Model[J].Journal of Image and Graphics,2023,28(10):3231-3242. [17]CHEN X,LIU Q,DENG X B,et al.Enhanced Network for Ultrasound Breast Tumor Segmentation Based on U-Net[J].Computer Engineering and Applications,2022,58(22):219-228. [18]BAI X F,MA Y N,WANG W J.Segmentation Method of Edge-guided Breast Ultrasound Images Based on Feature Fusion[J].Computer Science,2023,50(3):199-207. [19]PENG Y T,LIANG F M.Tumor segmentation method forbreast ultrasound images incorporating CNN and VIT[J].CAAI Transactions on Intelligent Systems,2024,19(3):556-564. [20]VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[C]//Proceedings of the 31st International Confe-rence on Neural Information Processing Systems.2017:6000-6010. [21]VALANARASUJ M J,PATEL V M.Unext:Mlp-based rapid medical image segmentation network[C]//International Confe-rence on Medical Image Computing and Computer-Assisted Intervention.Cham:Springer,2022:23-33. [22]WANG A,CHEN H,LIN Z,et al.Repvit:Revisiting mobile cnn from vit perspective[J].arXiv:2307.09283,2023. [23]QIN X,ZHANG Z,HUANG C,et al.U2-Net:Going deeperwith nested U-structure for salient object detection[J].Pattern Recognition,2020,106(1):1-12. [24]DENG Y,REN Z,KONG Y,et al.A hierarchical fused fuzzy deep neural network for data classification[J].IEEE Transactions on Fuzzy Systems,2016,25(4):1006-1012. [25]HOWARD A G,ZHU M,CHEN B,et al.Mobilenets:Efficient convolutional neural networks for mobile vision applications[J].arXiv:1704.04861,2017. [26]YU F,KOLTUN V.Multi-scale context aggregation by dilated convolutions[J].arXiv:1511.07122,2015. [27]HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:7132-7141. [28]WOO S,PARK J,LEE J Y,et al.Cbam:Convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV).2018:3-19. [29]HOU Q,ZHOU D,FENG J.Coordinate attention for efficientmobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:13713-13722. [30]AL-DHABYANI W,GOMAA M,KHALED H,et al.Dataset of breast ultrasound images[J].Data in Brief,2020,28:104863. [31]ZHAO H,SHI J,QI X,et al.Pyramid scene parsing network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:2881-2890. [32]CHEN J,LU Y,YU Q,et al.Transunet:Transformers makestrong encoders for medical image segmentation[J].arXiv:2102.04306,2021. [33]WANG A,CHEN H,LIN Z,et al.Repvit:Revisiting mobile cnn from vit perspective[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2024:15909-15920. |
|