计算机科学 ›› 2012, Vol. 39 ›› Issue (11): 90-89.

• 计算机网络与信息安全 • 上一篇    下一篇

基于支持向量机的Free}ate软件流量检测研究

何晓琴 白勇 冉启阳   

  1. (重庆电力高等专科学校计算机科学系 重庆 400053) (重庆电力高等专科学校 重庆 400053) (重庆电力高等专科学校电力工程系 重庆 400053)
  • 出版日期:2018-11-16 发布日期:2018-11-16

Freegate Software Flow Test

  • Online:2018-11-16 Published:2018-11-16

摘要: 近年来出现了可以突破网络过滤访问国外被禁止信息的破网行为。针对破网行为的研究与控制,具有十分 重要的现实意义。流量分类技术一直是国内外网络测量方向的研究热点,并在P2P检测领域中取得了很好的效果。 将流量分类领域中的支持向量机技术应用于破网软件frccgatc的行为检测。实验结果表明,该方法对于破网行为产 生的流量具有较高的检测率,为有效监测破网行为提供了一种新思路。

关键词: 破网行为,流量分类,支持向量机

Abstract: It has happened that someone broke through the Internet filtering and visited the forbidden information on the abroad website in recent years. It has great realistic significance for us to study and control that behavior. Flow classifi- canon technology has always been the research hotspots in the foreign and domestic network measurement direction and we has already obtained very good results in P2P detection area. This document applies the support vector machine tech- nology in the flow classification area to behavior detection of the Frecgate which is a special software used to break the Internet. The results from the tests show that this method has high detection rate on the flow caused by the behavior of breaking Internet and provides a new line of thinking on monitoring the behavior of breaking Internet effectively.

Key words: Behavior of breaking Internet, Flow classification, Support vector machine

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!