计算机科学 ›› 2012, Vol. 39 ›› Issue (8): 34-37.
• 计算机网络与信息安全 • 上一篇 下一篇
张锐恒,庄毅,赵振宇,王洲,顾晶晶
出版日期:
发布日期:
Online:
Published:
摘要: 针对MCI3移动定位算法在实时信息采样方面的不足,提出了EMCI3(Enhanccd MontcCarlo localization Boxed)定位算法。该算法在MCI3算法基础之上,引入遗传算法中的变异和交又操作,使样本选择向后验密度值较大 的区域转移,从而有效地解决了原算法存在的成功采样率较低的问题。仿真实验结果表明,同MCf3算法相比,EMCI3 算法平均采样数减少了约3000,定位精度提高了约17000
关键词: 无线传感器网络,移动定位,蒙特卡洛,遗传算法(GA)
Abstract: In view of low real-time sampling efficiency of Monte-Carlo localization boxed, a new localization method named enhanced Monte-Carlo localization boxed was proposed. Based on the MCI3, EMCI3 introduces the crossover and mutation operations in genetic algorithm to make samples to move towards regions with large value of posterior density distribution. So the distribution of samples is optimized, and the problem of low sampling efficiency is solved. Simulation results show that compared with the MCI3, the new algorithm reduces the number of samples. Therefore, the sampling efficiency and localization accuracy arc improved by about 17 0 0 , while the cost is reduced by about 30 0 0.
Key words: Wireless sensor network, Mobile localization, Monte carlo, GA
张锐恒,庄毅,赵振宇,王洲,顾晶晶. 基于MCB的传感网移动目标定位算法[J]. 计算机科学, 2012, 39(8): 34-37. https://doi.org/
0 / / 推荐
导出引用管理器 EndNote|Reference Manager|ProCite|BibTeX|RefWorks
链接本文: https://www.jsjkx.com/CN/
https://www.jsjkx.com/CN/Y2012/V39/I8/34
Cited