计算机科学 ›› 2012, Vol. 39 ›› Issue (7): 182-184.

• 人工智能 • 上一篇    下一篇

一种适用于大规模变量的并行遗传算法研究

李东,潘志松   

  1. (解放军理工大学指挥自动化学院 南京 210007)
  • 出版日期:2018-11-16 发布日期:2018-11-16

Research on Parallel Genetic Algorithms Based on MapReduce

  • Online:2018-11-16 Published:2018-11-16

摘要: 当前MapReduce并行编程模型得到了广泛的应用。相对于传统的基于PVM或者MPI的并行编程方式,它在执行时间和处理问题规模等方面有明显优势。针对并行遗传算法的特点,提出基于MapRcducc实现一种典型的并行遗传算法—粗粒度并行算法的方法,用以解决大规模变量问题。实验平台采用Hadoop,硬件条件为普通的服务器集群。在多目标优化问题测试中,当问题规模达到一定、处理变量数超过10E}7时,并行算法效率比串行提高数倍,并且能突破内存瓶颈。根据MapReduce自身特点调整其参数,改变并行程度,分析其对并行执行时间的影响。

关键词: 大规模变量,MapRcducc,并行遗传算法,多目标优化问题,性能分析

Abstract: MapReduce programming model enjoys widespread application and becomes new popular parallel programming paradigm nowadays. It uses MapReduce model to parallelize coarse-grained genetic algorithms,and takes mull objective optimization problem as the benchmark. All the experiments are made under hadoop and a cluster which consists of commodity servers. When the number of variable reach to 10E}7,the efficiency of parallel algorithm can be multiplied several times without introducing any bottlenecks revolved memory. Finally we studied how the parallel degree af- feels the performance.

Key words: Keywords Largcscale variables, MapReduce, Parallel genetic algorithms, Mult objective optimization, Performance analysis

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!