计算机科学 ›› 2012, Vol. 39 ›› Issue (Z11): 212-214.

• 软件工程 • 上一篇    下一篇

基于流形学习的“本质”维数估计

惠康华,李春利,王雪扬,许新忠   

  1. (中国民航大学计算机科学与技术学院 天津300300)
  • 出版日期:2018-11-16 发布日期:2018-11-16

Intrinsic Dimensionality Estimation Based on Manifold Learning

  • Online:2018-11-16 Published:2018-11-16

摘要: 局部线性嵌入算法(CI工E}是一种可以有效处理高维流形的非线性降维方法。提出一种基于全局保持的局部线性嵌入方法(UPLLE),其在保持高维流形局部近部关系的同时,可以保证距离远的样本仍然较远,从而可以有效地解决LLE算法中存在的问题,即LLE只能保持高维流形的局部近部关系,而无法确保距离远的样本不会靠近。更重要的是,GPLLE方法可以用来估计高维流形的“本质”维数。实验结果表明,在GPLLE估计的低维空间,相比LLE,GPLLE具有更好的分类性能。

关键词: “本质”维数,局部线性嵌入,全局保持,流形学习

Abstract: The locally linear embedding (LLE) algorithm is considered as a powerful method for the problem of nonlinear dimensionality reduction. In this paper, a new method called globally-preserving based LLE (GPLLE) is proposed.It not only preserves the local neighborhood,but also keeps those distant samples still far away,which solves the problem that LLE may encounter, i. e. LLE only makes local neighborhood preserving, but can't prevent the distant samples from nearing. Moreover, GPLLE can estimate the intrinsic dimensionality d of the manifold structure. The experiment results show that GPLLE always achieves better classification performances than LLE based on the estimated d.

Key words: Intrinsic dimensionality, Locally linear embedding, Globally preserving, Manifold learning

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!