计算机科学 ›› 2012, Vol. 39 ›› Issue (Z6): 507-509.
薛寺中,戴 飞,陈秀宏
摘要: 核判别分析(KDA)算法仅考虑c-1个判别特征,且计算类间离散度矩阵时需使用所有的训练样本,而一些有利于分类的边界结构未能被提取。为此,提出了一种非参数非线性(核)鉴别分析方法,其在计算特征空间中的类间散布矩阵时引入一个权值函数,从而能提取有利于分类的边界结构。仿真试验表明,新方法在识别性能上优于已有的一些方法,且避免了使用繁琐的矩阵奇异值分解理论,有一定的实用价值。
No related articles found! |
|