计算机科学 ›› 2013, Vol. 40 ›› Issue (12): 113-115.

• 综述 • 上一篇    下一篇

基于前景提取的复杂背景图像检索算法

冯喆,夏虎,傅彦,周俊临   

  1. 电子科技大学计算机科学与工程学院互联网科学中心 成都611731;电子科技大学计算机科学与工程学院互联网科学中心 成都611731;电子科技大学计算机科学与工程学院互联网科学中心 成都611731;电子科技大学计算机科学与工程学院互联网科学中心 成都611731
  • 出版日期:2018-11-16 发布日期:2018-11-16
  • 基金资助:
    本文受国家自然科学基金(61103109,11105024,61003231),中央高校基本科研业务费(ZYGX2011J057,ZYGX2012J071,ZYGX2012J085),四川省科技项目(2010HH0002,2011GZ0106,20112Z0001,2RZ0002,2RZ0003)资助

Complex Background Image Retrieval Based on Foreground Extraction

FENG Zhe,XIA Hu,FU Yan and ZHOU Jun-lin   

  • Online:2018-11-16 Published:2018-11-16

摘要: 基于内容的图像检索提供给使用者一种更直观、更精准的检索方式。用户在进行此类检索时,往往更关注图像的主体部分。为了消除背景信息对检索效果的影响,提出一种基于前景提取的复杂背景图像检索算法。实验证明,在H-S颜色直方图、LBP纹理特征以及颜色纹理混合特征上,该算法可以得到较优化的性能。

关键词: 前景提取,图像检索,颜色直方图,纹理特征

Abstract: Content-based image retrieval provides users a more intuitive and more accurate retrieval method.Users in such retrieval,tend to be more concerned about the main part of the image.In order to impair the influence of the background information on retrieval result,this paper presented an algorithm of complex background image retrieval based on foreground extraction.The experiment indicates that on H-S color histogram,LBP texture feature,and color-texture mixed characteristic,this algorithm can obtain more optimized performance.

Key words: Foreground extraction,Image retrieval,Color histogram,Texture features

[1] Rother C,Kolmogorov V,Blake A.Grabcut:Interactive fore-ground extraction using iterated graph cuts[J].ACM Transactions on Graphics (TOG).ACM,2004,23(3):309-314
[2] Boykov Y Y,Jolly M P.Interactive graph cuts for optimalboundary & region segmentation of objects in ND images[C]∥Proceedings of the International Conference on Computer Vision,ICCV 2001.2001:105-112
[3] Kolmogorov V,Zabin R.What energy functions can be mini-mized via graph cuts?[J].IEEE Transactions on Pattern Analy-sis and Machine Intelligence,2004,26(2):147-159
[4] Rao A,Srihari R K,Zhang Z.Spatial color histograms for content-based image retrieval[C]∥Proceedings of the 11th IEEE International Conference on Tools with Artificial Intelligence,1999.IEEE,1999:183-186
[5] Manjunath B S,Ma W Y.Texture features for browsing and retrieval of image data[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1996,18(8):837-842
[6] Tamura H,Mori S,Yamawaki T.Textural features correspon-ding to visual perception[J].IEEE Transactions on Systems,Man and Cybernetics,1978,8(6):460-473
[7] 周静,郝红卫.基于用户感兴趣区域的图像检索方法[J].计算机应用研究,2007,24(9):282-284
[8] Ford D R,Fulkerson D R.Flows in networks [M].Princeton:Princeton university press,2010
[9] Goldberg A V,Tarjan R E.A new approach to the maximum-flow problem[J].Journal of the ACM (JACM),1988,35(4):921-940
[10] Ojala T,Pietikainen M,Maenpaa T.Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(7):971-987

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!