计算机科学 ›› 2009, Vol. 36 ›› Issue (4): 264-267.

• • 上一篇    下一篇

基于BP神经网络的矽肺病预测组合模型研究

  

  • 出版日期:2018-11-16 发布日期:2018-11-16
  • 基金资助:
    本文受“863”(项目编号:2006AA02Z347)和“863”(项目编号:2006AA01A115)资助.

  • Online:2018-11-16 Published:2018-11-16

摘要: 矽肺是我国最为严重的职业病之一,严重危害工人的健康。研究表明,矽肺与粉尘接触量、吸烟量、接尘时间等存在明显的剂量反应关系。基于各矽肺致病影响因子,分别利用指数平滑-神经网络ES-BP(Exponential smoothing—BP neural network)和模糊C均值聚类-神经网络FCM-BP(Fuzzy c-means clustering-BP neural network)组合模型对接尘工人未来是否患病以及患病年龄做预测分析。实验结果表明:ES-BP模型能结合原始工人接尘时间队列数据特点,从

关键词: BP神经网络 指数平滑法 FCM聚类 组合预测 矽肺

Abstract: Silicosis is one of the most harmful occupational respiratory diseases that are threatening the miners working in dust environment in China deadly. Recently the researchers find that pneumoconiosis obeys the actual dose-response relations with the calenda

Key words: BP neural network, Exponential smoothing, FCM clustering,Combined forecasting,Cohort of silica dust

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!