1974年1月创刊(月刊)
主管/主办:重庆西南信息有限公司
ISSN 1002-137X
CN 50-1075/TP
CODEN JKIEBK
编辑中心
    数据库&大数据&数据科学 栏目所有文章列表
    (按年度、期号倒序)
        一年内发表的文章 |  两年内 |  三年内 |  全部
    Please wait a minute...
    1. 基于多特征融合的增强子-启动子相互作用预测综述
    胡宇佳, 甘伟, 朱敏
    计算机科学    2020, 47 (5): 64-71.   https://doi.org/10.11896/jsjkx.191100027
    摘要 (222)   PDF (2893KB) (574)  
    研究增强子-启动子相互作用机理有助于人们理解基因调控关系,进而揭示与疾病相关的基因,为疾病诊疗提供新思路和新方法。传统的生物检测方法的实验成本高、耗时长,且受分辨率的限制,难以精确鉴定单个增强子-启动子的相互作用。通过计算方法来解决生物问题已成为近年来的研究热点,此类方法可以通过复杂的网络结构主动学习序列特征和空间结构,进而准确预测增强子-启动子的作用。首先介绍了传统生物实验检测方法的研究现状;然后从序列特征的角度出发,围绕多特征融合的基本思想,对统计学和深度学习方法在增强子-启动子相互作用预测上的应用进行归纳整理;最后对该领域的研究热点和挑战进行总结分析。
    参考文献 | 相关文章 | 多维度评价
    2. 一种基于粗糙集和密度峰值的重叠社区发现方法
    张琴, 陈红梅, 封云飞
    计算机科学    2020, 47 (5): 72-78.   https://doi.org/10.11896/jsjkx.190400160
    摘要 (156)   PDF (1728KB) (428)  
    随着互联网和社会的发展,各个领域每天都会产生大量相互关联、彼此依赖的数据,这些数据根据不同的主题形成了各种复杂网络。挖掘社区结构是复杂网络领域中的一项重要研究内容,因为其在推荐系统、行为预测和信息传播等方面具有极其重要的意义。社区结构中的重叠社区结构在生活中普遍存在,更具有实际研究意义。为有效发现复杂网络中的重叠社区,文中引入了粗糙集理论对社区进行分析,识别出重叠节点,进而提出了一种基于粗糙集和密度峰值的重叠社区发现方法OCDRD(Overlapping Community Detection Algorithm Based on Rough Sets and Density Peaks)。该方法在传统网络节点局部相似性度量的基础上,结合灰色关联分析方法求出网络节点间的全局相似性,进而将其转化为节点间距离。将密度峰值聚类算法的思想应用于该算法中,以根据网络结构自动选取社区中心节点。依据网络中节点的距离比例关系,定义了社区的上近似、下近似以及边界域。最后,不断调整距离比率阈值并进行划分迭代,在每次迭代中针对社区的边界域进行计算,从而获得最佳重叠社区划分结构。在LFR基准人工网络数据集和真实网络数据集上,基于标准互信息(Normalized Mutual Information,NMI)和具有重叠性模块度EQ这两个评价指标,将OCDRD方法与近几年效果较好的其他社区发现算法进行测试比较。实验结果显示,OCDRD方法在社区划分结构方面整体优于其他社区发现算法,表明了该算法的可行性和有效性。
    参考文献 | 相关文章 | 多维度评价
    3. 基于金融文本情感的股票波动预测
    赵澄, 叶耀威, 姚明海
    计算机科学    2020, 47 (5): 79-83.   https://doi.org/10.11896/jsjkx.190400145
    摘要 (204)   PDF (4546KB) (827)  
    股票市场的情绪可以在一定程度上反映投资者的行为并影响其投资决策。市场新闻作为一种非结构性数据,能够体现并引导市场的大环境情绪,与股票价格一同成为至关重要的市场参考数据,能够为投资者的投资决策提供有效帮助。文中提出了一种可以准确、快速地建立针对海量新闻数据的多维情绪特征向量化方法,利用支持向量机(Support Victor Machine,SVM)模型来预测金融新闻对股票市场的影响,并通过bootstrap来减轻过拟合问题。在沪深股指上进行实验的结果表明,相比于传统模型,所提方法能够将预测准确度提高约8%,并在3个月的回测实验中获得了6.52%的超额收益,证明了其有效性。
    参考文献 | 相关文章 | 多维度评价
    4. 基于DCGRU-RF模型的路网短时交通流预测
    熊亭, 戚湧, 张伟斌
    计算机科学    2020, 47 (5): 84-89.   https://doi.org/10.11896/jsjkx.190100213
    摘要 (151)   PDF (1790KB) (441)  
    随着城市化进程的加快,我国城市机动车数量快速增加,使得现有路网容量难以满足交通运输需求,交通拥堵、环境污染、交通事故等问题与日俱增。准确高效的交通流预测作为智能交通系统的核心,能够有效解决交通出行和管理方面的问题。现有的短时交通流预测研究往往基于浅层的模型方法,不能充分反映交通流特性。文中针对复杂的交通网络结构,提出了一种基于DCGRU-RF(Diffusion Convolutional Gated Recurrent Unit-Random Forest)模型的短时交通流预测方法。首先,使用DCGRU(Diffusion Convolutional Gated Recurrent Unit)网络刻画交通流时间序列数据中的时空相关性特征;在获取数据中的依赖关系和潜在特征后,选择RF(Random Forest)模型作为预测器,以抽取的特征为基础构建非线性预测模型,得出最终的预测结果。实验以两条城市道路中的38个检测器为实验对象,选取了5周工作日的交通流数据,并将所提方法与其他常见交通流量预测模型进行比较。结果表明,DCGRU-RF模型能够进一步提高预测精度,准确度可达95%。
    参考文献 | 相关文章 | 多维度评价
    5. 大数据环境下基于关联规则的多标签学习算法
    王青松, 姜富山, 李菲
    计算机科学    2020, 47 (5): 90-95.   https://doi.org/10.11896/jsjkx.190300150
    摘要 (169)   PDF (1446KB) (507)  
    传统单标签挖掘技术研究中,每个样本只属于一个标签且标签之间两两互斥。而在多标签学习问题中,一个样本可能对应多个标签,并且各标签之间往往具有关联性。目前,标签间关联性研究逐渐成为多标签学习研究的热门问题。首先为适应大数据环境,对传统关联规则挖掘算法Apriori进行并行化改进,提出基于Hadoop的并行化算法Apriori_ING,实现各节点独立完成候选项集的生成、剪枝与支持数统计,充分发挥并行化的优势;通过Apriori_ING算法得到的频繁项集和关联规则生成标签集合,提出基于推理机的标签集合生成算法IETG。然后,将标签集合应用到多标签学习中,提出多标签学习算法FreLP。FreLP利用关联规则生成标签集合,将原始标签集分解为多个子集,再使用LP算法训练分类器。通过实验将FreLP与现有的多标签学习算法进行对比,结果表明在不同评价指标下所提算法可以取得更好的结果。
    参考文献 | 相关文章 | 多维度评价
    6. 基于节点演化分阶段优化的事件检测方法
    富坤, 仇倩, 赵晓梦, 高金辉
    计算机科学    2020, 47 (5): 96-102.   https://doi.org/10.11896/jsjkx.190400072
    摘要 (94)   PDF (1737KB) (313)  
    链路预测技术是分析网络演化的有效方法,也为社会网络事件检测提供了一种新思路。当前采用链路预测进行事件检测的方法大多是从宏观的网络演化入手,也有少数结合节点演化的检测方法,但其稳定性不佳,对事件的敏感性也不够高,不能准确检测事件的发生。基于以上问题,提出了一种基于节点演化分阶段优化的事件检测方法(Node Evolution Staged Optimization,NESO_ED)。首先通过分阶段优化的方法加强事件检测的稳定性,并获取节点指标权重数组;然后根据不同阶段按不同规则选取节点的最佳相似性计算指标,使节点能更好地量化网络演化情况,以此提高事件检测的敏感性。此外,分析了网络演化过程中节点选取指标的变化情况,揭示了事件发生对节点演化产生的不同影响。基于真实社会网络VAST进行对比实验,结果显示NESO_ED方法在事件检测敏感性上比LinkEvent方法提高了227%,比NodeED方法提高了63%,NESO_ED方法的稳定性也比NodeED方法提高了66%,这表明NESO_ED方法能更加准确且稳定地进行事件检测。
    参考文献 | 相关文章 | 多维度评价
    7. 基于多类邻域三支决策模型的不平衡数据分类
    向伟, 王新维
    计算机科学    2020, 47 (5): 103-109.   https://doi.org/10.11896/jsjkx.180601099
    摘要 (124)   PDF (1387KB) (315)  
    不平衡数据分类是一种重要的数据分类问题。对于不平衡数据中规模较小的类,传统的分类算法的分类效果较差。对此,提出一种多类邻域三支决策模型的不平衡数据分类算法。首先,将传统的三支决策在混合数据和多个类的情形下进行推广,提出了混合数据的多类邻域三支决策模型;然后,在该模型中给出一种自适应代价函数的设定方法,并基于该方法提出了多类邻域三支决策模型的不平衡数据分类算法。仿真实验的结果表明,所提出的分类算法对于不平衡数据具有更好的分类性能。
    参考文献 | 相关文章 | 多维度评价
    首页 | 前页| 后页 | 尾页 第1页 共1页 共7条记录