Toggle navigation
计算机科学
首页
关于本刊
期刊介绍
学术指标
学术荣誉
编委会
道德声明
OA政策
期刊订阅
联系我们
English
大模型技术研究及其前沿应用
默认
最新文章
浏览次数
Please wait a minute...
选择:
导出引用
EndNote
Ris
BibTeX
显示/隐藏图片
Select
1.
大模型红队测试研究综述
包泽芃, 钱铁云
计算机科学 2025, 52 (
1
): 34-41. DOI:
10.11896/jsjkx.240400190
摘要
(
380
)
PDF(pc)
(1675KB)(
424
)
可视化
收藏
大模型红队测试(Large Model Red Teaming)旨在让大语言模型(Large Language Model,LLM)接收对抗测试,从而诱使模型输出有害的测试用例,进而发现模型中的漏洞并提高其鲁棒性。大模型红队测试是大模型领域的前沿课题,近年来受到学术界和工业界的广泛关注。研究者们针对大模型红队测试提出了众多解决方案,并在模型对齐上取得了一定进展。然而,受限于大模型红队数据的短缺和评价标准的模糊,现有研究大多局限于针对特定的场景进行评估。文中首先从与大模型安全相关的定义出发,对其所涉及的各种风险进行阐述;其次,针对大模型红队测试的重要性及其主要类别进行了阐述,综述和分析了相关红队技术的发展历程,并介绍了已有的数据集和评价指标;最后,对大模型红队测试的未来发展趋势进行了展望和总结。
参考文献
|
相关文章
|
多维度评价
Select
2.
面向联邦大语言模型训练的传输优化技术综述
顿婧博, 李卓
计算机科学 2025, 52 (
1
): 42-55. DOI:
10.11896/jsjkx.240500095
摘要
(
293
)
PDF(pc)
(1768KB)(
921
)
可视化
收藏
随着人工智能技术的快速发展,各类大型语言模型不断涌现。但是专用大语言模型的用户及数据集大多具有隐私性和安全性要求,数据安全隐私问题亟待解决。在此背景下,联邦大语言模型应运而生并得到越来越多的关注。由于大型语言模型庞大的数据量以及联邦学习的分布式架构,海量的参与节点与云服务器间进行大量的模型交换会产生较高的通信成本。为提升模型收敛速率,研究人员对面向联邦大语言模型训练的传输优化技术展开了研究。文章分析了联邦大语言模型所面临的挑战;综述了基于模型微调的传输优化方法、基于模型压缩的传输优化方法以及基于分布式并行处理的传输优化的优化问题;介绍了已有的开源联邦大语言模型以及所用到的传输优化技术,并对未来研究方向进行了展望。
参考文献
|
相关文章
|
多维度评价
Select
3.
大语言模型驱动的多元关系知识图谱补全方法
刘畅成, 桑磊, 李炜, 张以文
计算机科学 2025, 52 (
1
): 94-101. DOI:
10.11896/jsjkx.240600170
摘要
(
291
)
PDF(pc)
(2370KB)(
352
)
可视化
收藏
知识图谱通过将复杂的互联网信息转化为易于理解的结构化形式,极大地提高了信息的可访问性。知识图谱补全技术进一步增强了知识图谱的信息完整性,显著提升了智能问答和推荐系统等通用领域应用的性能与用户体验。然而,现有的知识图谱补全方法大多专注于关系类型较少和简单语义情景下的三元组实例,未能充分利用知识图谱在处理多元关系和复杂语义方面的潜力。针对此问题,提出了一种由大语言模型(LLM)驱动的多元关系知识图谱补全方法。将 LLM 的深层语言理解能力与知识图谱的结构特性相结合,有效捕捉多元关系,理解复杂语义情景。此外,还引入了一种基于思维链的提示工程策略,旨在提高补全任务的准确性。该方法在两个公开知识图谱数据集上的实验结果都取得了显著的提升。
参考文献
|
相关文章
|
多维度评价
Select
4.
基于大语言模型的移动应用可访问性增强方法
马琦珉, 李向民, 周雅倩
计算机科学 2024, 51 (
12
): 223-233. DOI:
10.11896/jsjkx.240400077
摘要
(
194
)
PDF(pc)
(3844KB)(
233
)
可视化
收藏
移动应用可访问性(Mobile Application Accessibility)是指移动应用程序设计和实现的程度,目的是确保任何用户都能够轻松地访问和使用该应用。国内移动应用市场上的海量应用中支持无障碍功能的应用少之又少,与数量庞大且与日俱增的老年群体和视觉障碍群体追求享受数字时代红利、打破数字鸿沟的愿景产生矛盾。大规模语言模型(Large Language Model,LLM)在实现人类水平的智能方面表现出了巨大的潜力,通过提示词工程引导可以进行简单的逻辑推理和决策判断。此外,缩短交互路径是一种最为直观的移动应用可访问性增强方法。受到上述事实的启发,提出一种基于大规模语言模型的移动应用可访问性增强方法,创新性地应用可访问性服务和大语言模型,兼顾安全性、自动化和智能化。实现了一种移动应用可访问性辅助工具AccessLink,在非侵入式和用户授权的前提下,感知和操作移动应用的图形化用户界面,由此实现了基于自动化方法的数据集构建方法,并在构建的数据集上使用大模型GPT-3.5、GPT-4.0、通义千问和百川进行实验,证明了所提方法的有效性。
参考文献
|
相关文章
|
多维度评价
Select
5.
基于大语言模型的电力知识库智能问答系统构建与评价
张金营, 王天堃, 么长英, 谢华, 柴林政, 刘书恺, 李彤亮, 李舟军
计算机科学 2024, 51 (
12
): 286-292. DOI:
10.11896/jsjkx.240300104
摘要
(
528
)
PDF(pc)
(1738KB)(
552
)
可视化
收藏
大语言模型是近年来自然语言处理领域的一个重大突破,已成为该领域研究的一种新范式。在金融、法律等垂直领域,基于FinGPT,ChatLaw等垂直领域大模型的智能问答系统,促进了大模型技术在相关领域的学术研究与应用落地。然而,由于电力领域缺乏相关的高质量数据,相关的大模型问答系统的构建工作遇到了较大阻碍。为了构建电力领域的智能问答系统,提出了基于大语言模型的电力知识库智能问答系统 ChatPower。为了确保问答效果,ChatPower充分利用了电力管理各环节的数据。通过语义化理解,梳理和整合了大量的电力专业知识,精心设计和构建了一个较大规模的电力系统知识库。该知识库覆盖电力相关规章制度、安全生产管理体系以及发电设备故障知识等方面的内容。此外,通过参考检索到的电力知识,ChatPower显著缓解了问答中存在的模型幻觉问题,并在检索系统中引入了BM25检索、向量库检索与重排相结合的方法,有效降低了单纯依赖向量库检索的不准确性。同时,ChatPower结合基于大模型的提示工程技术,提升了对于规章制度类型问题生成回复的条理性。为了对问答系统进行评价,构建了一个电力知识问答的测试数据集,并对其进行了测试验证,测试结果表明:基于大语言模型的电力知识库问答系统ChatPower能够有效提升电力相关知识的检索和问答的准确性。
参考文献
|
相关文章
|
多维度评价
Select
6.
大语言模型安全现状与挑战
赵月, 何锦雯, 朱申辰, 李聪仪, 张英杰, 陈恺
计算机科学 2024, 51 (
1
): 68-71. DOI:
10.11896/jsjkx.231100066
摘要
(
999
)
PDF(pc)
(2277KB)(
3039
)
可视化
收藏
大语言模型因其出色的文本理解和生成能力,被广泛应用于自然语言处理领域并取得了显著成果,为社会各界带来了巨大的便利。然而,大语言模型自身仍存在明显的安全问题,严重影响其应用的可信性与可靠性,是安全学者需广泛关注的问题。文中针对大语言模型自身的安全问题,首先从基于大语言模型的恶意应用问题切入,阐述提示注入攻击及其相应的防御方法;其次,介绍大语言模型幻觉带来的可信问题,对幻觉问题的量化评估、幻觉来源和缓解技术是当前研究的重点;然后,大语言模型隐私安全问题强调了个人及企业数据的保护问题,一旦在进行人机交互时泄露商业秘密和个人敏感信息,将可能引发严重的安全风险,当前研究主要通过可信执行环境和隐私计算技术来进行风险规避;最后,提示泄露问题关注攻击者如何窃取有价值的提示词进行获利或通过个性化提示词泄露个人隐私。提升大语言模型的安全性需要综合考虑模型隐私保护、可解释性研究以及模型分布的稳定性与鲁棒性等问题。
参考文献
|
相关文章
|
多维度评价