Computer Science ›› 2018, Vol. 45 ›› Issue (3): 51-57.doi: 10.11896/j.issn.1002-137X.2018.03.008
Previous Articles Next Articles
LI Zhao-hong, ZHENG Hong-chan, LIAN Hui-fen and JIN Ming-ya
[1] BECCARI C,CASCIOLA G,ROMANI L.A non-stationary uniform tension controlled interpolating 4-point scheme reproducing conics[J].Computer Aided Geometric Design,2007,24:1-9. [2] ROMANI L.From approximating subdivision schemes for exponential splines to high-performance interpolating algorithms[J].Journal of Computational and Applied Mathematics,2009,224(1):383-396. [3] CONTI C,ROMANI L.Algebraic conditions on non-stationary subdivision symbols for exponential polynomial reproduction[J].Journal of Computational and Applied Mathematics,2011,236:543-556. [4] NOVARA P,ROMANI L.Building blocks for designing arbitrarily smooth subdivision schemes with conic precision[J].Journal of Computational and Applied Mathematics,2015,279:67-79. [5] DUBUC S.Interpolation through an iterative scheme[J].Journal of Mathematical Analysis and Applications,1986,114:185-204. [6] CONTI C,GEMIGNANI L,ROMANI L.Exponential pseudo-splines:Looking beyond exponential B-splines[J].Journal of Computational and Applied Mathematics,2016,439:32-56. [7] DYN N,LEVIN D.Analysis of asymptotically equivalent binary subdivision schemes[J].Journal of Computational and Applied Mathematics,1995,193(2):594-621. [8] JEONG B,LEE Y J,YOON J,et al.A family of non-stationary subdivision schemes reproducing exponential polynomials[J].Journal of Mathematical Analysis and Applications,2013,402(1):207-219. [9] CHARINA M,CONTI C,ROMANI L.Reproduction of exponential polynomials by multivariate non-stationary subdivision schemes with a general dilation matrix[J].Numerische Mathe-matik,2014,127(2):223-254. [10] JEONG B,KIM H,LEE Y J,et al.Exponential polynomial reproducing property of non-stationary symmetric subdivision schemes and normalized exponential B-splines[J].Advances in Computational Mathematics,2013,38:647-666. [11] LI B J,YU Z L,YU B W,et al.Non-stationary Subdivision for Exponential Polynomials Reproduction[J].Acta Mathematicae Applicatae Sinica(English Series),2013,29(3):567-578. [12] YU B W.A Family of Subdivision Schemes for Exponential Po-lynomials Reproduction[D].Dalian:Dalian University of Technology,2008.(in Chinese) 郁博文.一类重构指数多项式的细分方法[D].大连:大连理工大学,2008. [13] LI B J.Construction of Exponentials Reproducing Subdivision Schemes and Rapid Evaluation of Interpolatory Subdivision Surfaces[D].Dalian:Dalian University of Technology,2009.(in Chinese) 李宝军.指数多项式曲线细分重构与插值细分曲面快速计算[D].大连:大连理工大学,2009. [14] DYN N,LEVIN D,LUZZATTO.Exponentials reproducing subdivision schemes[J].Foundations of Computational Mathema-tics,2003,3:187-206. [15] DYN N,HORMANN K,SABIN M,et al.Polynomial reproduction by symmetric subdivision schemes[J].Journal of Approximation Theory,2008,15:28-42. [16] ROMAN S.The formula of Faà di Bruno[J].American Mathematical Monthly,1980,10:805-809. [17] CONTI C,ROMANI L,YOON J.Approximation order and approximate sum rules in subdivision[J].Journal of Approximation Theory,2016,207(C):380-401. |
No related articles found! |
|