Computer Science ›› 2016, Vol. 43 ›› Issue (Z11): 223-228.doi: 10.11896/j.issn.1002-137X.2016.11A.051

Previous Articles     Next Articles

Remote Sensing Images Fusion Method Coupling Contourlet Transform with Particle Swarm Optimization

GU Zhi-peng and HE Xin-guang   

  • Online:2018-12-01 Published:2018-12-01

Abstract: In order to effectively optimize the retention of multi-spectral characteristic and the reservation of spatial information in the fusion image,we presented a remote sensing image fusion method by coupling contourlet transform and particle swarm optimization (PSO).The optimized fusion image is achieved by setting the PSO fitness functions which depend on the objective evaluation indexes of fusion image.The optimal weighting coefficient of lowpass sub-band and the best threshold for the regional structure similarity of highpass sub-band are adaptively obtained by PSO.Firstly,the panchromatic image and I component of multispectral image are decomposed respectively by using the contourlet transform.According to the different feature information,the difference between entropy and relative deviation is regarded as PSO fitness function to adaptively find the best weighting coefficient by the optimized algorithm in the lowpass sub-band.Meanwhile,the structure similarity is considered as PSO fitness function to search the best threshold p and the fusion rules of regional structure similarity is used to fuse image in the highpass sub-band.Finally,the fused image is reconstructed by inverse transform of contourlet and IHS.The simulation experiment results show that the proposed algorithm can effectively preserve the spectral information and spatial information of the original images.

Key words: Remote sensing image fusion,Contourlet transform,Particle swarm optimization,Structural similarity

[1] 郑影.多源遥感图像融合方法研究[J].计算机仿真,2011,8(12):289-292
[2] Pohl C,Van Genderen J L.Multisensor image fusion in remote sensing:concepts,methods and applications[J].International Journal of Remote Sensing,1998,19(5):823-854
[3] Do M N,Vetterli M.Contourlets in Pro.Beyond Wavelets[M].Academic Press,New York,2002:1-27
[4] 苗启广,王宝树.基于Contourlet的图像融合新方法[J].计算机科学,2008,35(5):231-235
[5] 朱康,贺新光.基于Contourlet系数局部特征的选择性遥感图像融合算法[J].激光与光电子学进展,2012(2):44-49
[6] 陈利霞,邹宁,袁华,等.基于改进Contourlet变换的遥感图像融合算法[J].计算机应用,2015,5(7):2015-2019
[7] 赵诚,付梦印,王立平.基于粒子群优化的多分辨率图像融合[J].兵工学报,2010,3(2):171-176
[8] 罗晓清,吴小俊.结合熵主成分变换与优化方法的遥感图像融合[J].计算机应用,2013(2):468-471,475
[9] 王相海,魏婷婷,周志光.Contourlet方向区域相关性的遥感图像融合[J].遥感学报,2010,4(5):905-916
[10] 刘坤,李晖晖.Contourlet相关性和PCA的图像融合算法[J].计算机工程与应用,2012,8(16):10-14,62
[11] Wu Yi-quan,Shen Y,Yin J.Remote Sensing Image Fusion Based on Improved Gradient Projection NMF and Complex Contourlet Transform[J].Acta Photonica Sinica,2014,43(43): 510001-051001
[12] Chen L,Zou N,Yuan H,et al.Remote sensing image fusion algorithm based on modified Contourlet transform[J].Journal of Computer Applications,2015
[13] 王宪,张方生,慕鑫,等.基于多目标粒子群算法的多传感器图像融合[J].光电工程,2012,9(6):102-110
[14] 那彦,王赟鹏.多尺度变换和粒子群优化的图像融合方法[J].电子科技,2015,8(7):137-139,144
[15] Chen H Y,Leou J J.Multispectral and multiresolution image fusion using particle swarm optimization[J].Multimedia Tools & Applications,2012,60(3):495-518
[16] Yang C,Yan W.Multi-source remote-sensing image fusion based on wavelet transform and particle swarm optimization[J].International Journal of Applied Mathematics & Statistics,2013,51(24):602-610
[17] Eberhart R,Kennedy J.A new optimizer using particle swarm theory[C]∥Proceedings of the Sixth International Symposium on Micro Machine and Human Science,1995(MHS’95).IEEE,1995:39-43
[18] 孙欣.基于粒子群优化的图像融合方法研究[D].西安:西安电子科技大学,2014
[19] 朱康,贺新光,杨波.一种基于小波系数局部特征的选择性遥感图像融合方法[J].遥感信息,2011(5):9-14
[20] 李文静,温文鹏,王清和.基于Contourlet变换的遥感图像融合方法研究[J].国土资源遥感,2015,7(2):44-50
[21] 靳鑫,蒋刚毅,陈芬,等.基于结构相似度的自适应图像质量评价[J].光电子·激光,2014(2):378-385

No related articles found!
Full text



No Suggested Reading articles found!