Computer Science ›› 2016, Vol. 43 ›› Issue (Z11): 113-116.doi: 10.11896/j.issn.1002-137X.2016.11A.024

Previous Articles     Next Articles

Improvement and Simulation Application Based on Standard Firefly Algorithm

ZANG Rui and LI Hui-hui   

  • Online:2018-12-01 Published:2018-12-01

Abstract: Through studying a kind of intelligent optimization algorithm namely firefly algorithm,the standard updating formula of firefly algorithm is improved by introducing the new adaptive inertia weight to increase the convergence speed of the algorithm and the virtual firefly is used to enhance the cooperation and the exchange of information between the fireflies.For the firefly algorithm in cross-border issues and early boundary problem,a symmetric boundary mutation is introduced,so as to improve the optimization rate of algorithm.The experiment results of six standard test functions show that the effectiveness and the convergence speed of the improved firefly algorithm are improved.In the end,the algorithm is applied to two classical engineering optimization problems,the superiority of the improved firefly algorithm is confirmed by the experiment results,and the applicability of the improved firefly algorithm is verified.

Key words: Firefly algorithm,Adaptive inertia weight,Mutual cooperation,Exchange of information,Boundary mutation,Engineering optimization

[1] Yang Xin-she.Nature-Inspired Metaheuristic Algorithms[M].Luniver Press,2010
[2] Yang X S,贺兴时.群体智能和智能优化算法[J].纺织高校基础科学学报,2013,6(3):287-296
[3] 杨艳,周永权,罗林,等.人工萤火虫群优化算法求解约束优化问题[J].小型微型计算机系统,2014,35(1):185-188
[4] 刘鹏,刘弘,郑向伟,等.基于改进萤火虫算法的动态自动聚集路径规划方法[J].计算机应用研究,2011,8(11):4146-4149
[5] 董静.萤火虫算法研究及其在水下潜器路径规划中的应用[D].哈尔滨:哈尔滨工程大学,2013
[6] Gandomi A H,Yang Xin-she,Alavi A H.Cuckoo search algorithm:a metaheuristic approach to solve structural optimization problems[J].Engineering with Computers,2013,29(1):17-35
[7] Yang Xin-she,Gandomi A H.Bat algorithm:a novel approachfor global engineering optimization[J].Engineering Computations,2012,29(5):464-483
[8] 莫愿斌,马彦追.单纯形法的改进萤火虫算法及其在非线性方程组求解中的应用[J].智能系统学报,2014,9(6):747-755
[9] 冯艳红,刘建芹,贺毅朝.基于混沌理论的动态种群萤火虫算法[J].计算机应用,2013,3(3):796-799
[10] 吴东周,丁学明.基于改进萤火虫算法的T—S模型辨识[J].计算机仿真,2013,0(3):327-330
[11] 赵玉新,Yang X S,刘利强.新兴元启发式优化方法[M].北京:科学出版社,2013
[12] 刘长平,叶春明.一种新颖的仿生群智能优化算法:萤火虫算法[J].计算机应用研究,2011,8(9):3295-3297
[13] 罗辞勇,陈民铀,韩力.适应性粒子群寻优算法[J].控制与决策,2009,24(6):859-863
[14] 陈寿文.基于质心和自适应指数惯性权重改进的粒子群算法[J].计算机工程与应用,2015,3(3):675-679
[15] 杨朋樽.粒子群算法的拓扑结构分析与研究[D].太原:太原理工大学,2010
[16] 宋莉,邓长寿,曹良林.粒子群优化算法的边界变异策略比较研究[J].计算机工程,2015,1(3):191-197

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!