Computer Science ›› 2017, Vol. 44 ›› Issue (Z6): 455-458.doi: 10.11896/j.issn.1002-137X.2017.6A.102

Previous Articles     Next Articles

Double Sunburst Matrix Visualization to Overview Majors Distributary Data

LI Hui, CHEN Hong-qian, DONG Shuang and MA Li-yi   

  • Online:2017-12-01 Published:2018-12-01

Abstract: To show and analyze the feature of attribute flow in majors distributary data,a sunburst matrix visualization method was proposed in the paper.The data with various attributes are firstly selected and counted in the method.The statistical data are mapped to the visual elements of visualization results.The mapping procedure includes three parts.In the first part,the scattered bubble charts are introduced to express the whole statistical numbers of student with various source and destination.Secondly,contrast method of pie chart is introduced into bubbles to show its gender proportion.The pie chart is adopted as the inner layer of sunburst.Thirdly,the students’ grade point attribute in each category are designed to display comparably in the outer layer of sunburst.The experimental results and the evaluation of the mana-gement staff denoted that the visualization results can be expressed directly to the flow characteristics such as the number of students,gender proportion,and grade point and so on.The detailed classification of students and professional construction and training are expected to achieve according to the visualization results.

Key words: Data visualization,Majors distributary data,Double sunburst,Management of student

[1] 董泽芳,王晓辉.普林斯顿大学本科人才培养模式的特点及启示[J].高教探索,2014(2):77-81.
[2] 王卫红,蔡雪.计算机大类专业分流的实践与思考[J].计算机教育,2014(6):87-90
[3] 颜兵兵,姜永成,殷宝麟.大类招生模式下专业分流方案设计与实例分析[J].高教论坛,2014(9):44-47.
[4] 袁晓如,张昕,肖何,等.可视化研究前沿及展望[J].科研信息化技术与应用,2011,2(4):3-13.
[5] NEUMANN P,TANG A,CARPENDALE S.A Framework for Visual Information Analysis:Technical Report 2007-87123[R].University of Calgary,Calgary,AB,Canada,July 2007.
[6] KEIM D,QU H,MA K L.Big-Data visualization [J].Computer Graphics and Applications,IEEE,2013,33(4):20-21.
[7] 沛原.基于移动终端日志数据的人群特征可视化研究[D].杭州:浙江大学,2015.
[8] ZHAO J,COLLINS C,CHEVALIER F,et al.Interactive exploration of implicit and explicit relations in facet datasets[J].IEEE Trans.on Visualization and Computer Graphics,2013,19(12):2080-2089.
[9] 雷辉,陈海东,徐佳逸,等.不确定性可视化综述[J].计算机辅助设计与图形学学报,2013,25(3):294-303.
[10] 孙扬,封孝生,唐九阳,等.多维可视化技术综述[J].计算机科学,2008,35(11):1-7.
[11] ELMQVIST N,DRAGICEVIC P,FEKETE J D.Rolling thedice:Multi-dimensional visual exploration using scatter plot matrix navigation [J].IEEE Trans.Vis.Comput.Graph.,2008,14(6):1539-1148.
[12] POCO J,DASGUPTA A,WEI Y X,et al.SimilarityExplorer:A Visual Inter-Comparison Tool for Multifaceted Climate Data[J].Eurographics Conference on Visualization (EuroVis),2014,33(3):341-350.
[13] HOFMANN H,VENDETTUOLI M.Common Angle Plots asPerception-True Visualizations of Categorical Associations [J].IEEE Transactions on Visualization and Computer Graphics,IEEE Computer Society,2013,19(12):2297-2305.
[14] 陈谊,蔡进峰,石耀斌,等.基于平行坐标的多视图协同可视分析方法[J].系统仿真学报,2013,5(1):81-86.
[15] STOLPER C D,PERER A,et al.Progressive Visual Analytics:User-Driven Visual Exploration of In-Progress Analytics[J].IEEE Transactions on Visualization and Computer Graphics,2014,20(12):1653.

No related articles found!
Full text



No Suggested Reading articles found!