Computer Science ›› 2017, Vol. 44 ›› Issue (12): 131-134.doi: 10.11896/j.issn.1002-137X.2017.12.026
Previous Articles Next Articles
WANG Tie-jian, WU Fei and JING Xiao-yuan
[1] LYU M R.Software Reliability Engineering:A Roadmap[C]∥Future of Software Engineering.2007:153-170. [2] LESSMANN S,BAESENS B,M UES C,et al.Benchmarkingclassification models for software defect prediction:A proposed framework and novel findings[J].IEEE Transaction Software Engineering,2008,34(4):485-496. [3] NAM J,PANY S J,KIM S.Transfer Defect Learning[C]∥ International Confernece on Software Engineering.2013:382-391. [4] MCCABE T J.A complexity measure[J].IEEE Transactions Software Engineering,1976,SE-2(4):308-320. [5] HALSTEAD M H.Elements of Software Science (Operatingand programming systems series)[M].New York:Elsevier North-Holland,1977. [6] KHOSHGOFTAAR M T,GAO K,SELIYA N.Attribute Selection and Imbalanced Data:Problems in Software Defect Prediction[C]∥IEEE International Conference on Tools with Artificial Intelligence.2010:137-144,. [7] GAO K,KHOSHGOFTAAR T M, NAPOLITANO A.A Hybrid Approach to Coping with High Dimensionality and Class Imbalance for Software Defect Prediction[C]∥Machine Lear-ning and Applications.2012:281-288. [8] MULLER K R,MIKA S,RATSCH G,et al.An introduction to kernel based learning algorithms[J].IEEE Transactions on Neural Networks,2001,12(2):181-201. [9] RAKOTOMAMONJY A,BACH F,CANU S.More efficiency in multiple kernel learning[C]∥International Conference on Machine Learning.2007:775-782. [10] GEHLER P V,NOWOZIN S.On Feature Combination for Multiclass Object Classification[C]∥IEEE 12th International Conference on Computer Vision.2009:221-228. [11] KEMBHAVI A,SIDDIQUIE B,MIEZIANKO R.IncrementalMultiple Kernel Learning for Object Recognition[C]∥IEEE 12th International Conference on Computer Vision.2009:638-645. [12] YANG M,ZHANG L,FENG X,et al.Fisher DiscriminationDictionary Learning for sparse representation[C]∥IEEE International Conference on Computer Vision.2011:543-550. [13] JING X Y,YING S,ZHANG Z W,et al.Dictionary learningbased software defect prediction[C]∥International Conference on Software Engineering.2014:792-802. [14] ELISH K,ELISH M.Predicting Defect-prone Software Modules Using Support Vector Machines[J].Journal Systems and Software,2008,81(5):649-660. [15] TURHAN B,BENER A.Analysis of nave bayes’ assumptions on software fault data:An empirical study[J].Data Knowledge Engineering,2009,68(2):278-290. [16] WANG J,SHEN B J,CHEN Y T.Compressed C4.5 Models for Software Defect Prediction[C]∥International Conference on Quality Software.2012:13-16. [17] SUN Z B,SONG Q B,ZHU X Y.Using Coding Based Ensemble Learning to Improve Software Defect Prediction[J].IEEE Transactions on Systems Man and Cybernetics Part C,2012,42(6):1806-1817. [18] MA G,LUO C,CHEN H.Kernel Based Asymmetric Learning for Software Defect Prediction[J].IEICE Transactions on Information and Systems,2012,E95-D(1):215-226. [19] ZHENG J.Cost-sensitive boosting neural networks for software defect prediction[J].Expert Systems with Applications,2010,37(6):4537-4543. [20] ROSASCO L,VERRI A,SANTORO M,et al.Iterative projection methods for structured sparsity regularization.http://dspace.mit.edu/bitstream/handle/1721.1/49428/MIT-CSAIL-TR-2009-050.pdf?sequence=1. [21] YANG M,ZHANG L,YANG J,et al.Metaface learning for sparse representation based face recognition[C]∥International Conference on Image Processing.2010:1601-1604. [22] ZHANG D,YANG M,FENG X,Sparse representation or collabortive representation:which helps face recognition?[C]∥IEEE International Conference on Computer Vision.2011:471-478. |
No related articles found! |
|