Computer Science ›› 2021, Vol. 48 ›› Issue (11A): 225-231.doi: 10.11896/jsjkx.201200066
• Big Data & Data Science • Previous Articles Next Articles
JIANG Cong-feng1, YIN Ji-liang1, HU Hai-zhou1, YAN Long-chuan2, ZHANG Ji-lin3, WAN Jian4, QIU Ye-liang5
CLC Number:
[1]XU G,XU C,JIANG S.Prophet:Scheduling executors withtime-varying resource demands on data-parallel computation frameworks [C]//2016 IEEE International Conference on Autonomic Computing (ICAC).Piscataway,NJ:IEEE,2016:45-54. [2]YAN Y,GAO Y,CHEN Y,et al.Tr-spark:Transient computing for big data analytics [C]//Proceedings of the Seventh ACM Symposium on Cloud Computing.New York,NY:ACM,2016:484-496. [3]JYOTHI S A,CURINO C,MENACHE I,et al.Morpheus:Towards automated slos for enterprise clusters [C]//12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16).Berkeley,CA:USENIX,2016:117-134. [4]RAJAN K,KAKADIA D,CURINOC,et al.PerfOrator:elo-quent performance models for Resource Optimization [C]//Proceedings of the Seventh ACM Symposium on Cloud Computing.New York,NY:ACM,2016:415-427. [5]CHEN W,RAO J,ZHOU X.Preemptive,low latency datacenter scheduling via lightweight virtualization [C]//2017 {USENIX} Annual Technical Conference ({USENIX}{ATC} 17).Berkeley,CA:USENIX,2017:251-263. [6]CORTEZ E,BONDE A,MUZIO A,et al.Resource central:Understanding and predicting workloads for improved resource management in large cloud platforms [C]//Proceedings of the 26th Symposium on Operating Systems Principles.New York,NY:ACM,2017:153-167. [7]JIANG C,WANG Y,OU D,et al.EASE:Energy efficiency and proportionality aware virtual machine scheduling [C]//2018 30th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD).Piscataway,NJ:IEEE,2018:65-68. [8]QIU Y,JIANG C,WANG Y,et al.Energy aware virtual machine scheduling in data centers[J].Energies,2019,12(4):646. [9]GARRAGHAN P,YANG R,WEN Z,et al.Emergent Failures:Rethinking Cloud Reliability at Scale[J].IEEE Cloud Computing,2018,5(5):12-21. [10]PAN A,WANG X,LI H.Conceptual Modeling on Tencent's Distributed Database Systems [C]//International Conference on Conceptual Modeling.Cham:Springer,2018:12-24. [11]KAUR H,CHHABRA A.Fault-aware advance reservationscheduling in heterogeneous computing systems[J].International Journal of Applied Engineering Research,2018,13(11):9636-9645. [12]CHEN W,PI A,WANG S,et al.Characterizing scheduling delay for low-latency data analytics workloads [C]//2018 IEEE International Parallel and Distributed Processing Symposium (IPDPS).IEEE,2018:630-639. [13]CAO X,ZHONG Y,ZHOU Y,et al.Interactive temporal recurrent convolution network for traffic prediction in data centers[J].IEEE Access,2018,6:5276-5289. [14]JIANG C,HUANG W,REN Z,et al.Towards building a scalable data analytics system on clouds:An early experience on alicloud [C]//2018 IEEE 11th International Conference on Cloud Computing (CLOUD).Piscataway,NJ:IEEE,2018:891-895. [15]MAZUMDAR S,KUMAR A S.Statistical analysis of a datacenter resource usage patterns:A case study [C]//Proceedings of the International Conference on Computing and Communication Systems.Singapore:Springer,2018:767-779. [16]GE Z F,W J W,JIANG C F,et al.Analysis of resource utilization of co-located clusters[J].Chinese Journal of Computers,2020,43(6):1103-1122. [17]WANG J W,GE Z F,JIANG C F,et al.Load characteristics and task scheduling optimization analysis of co-located data center[J].Computer Engineering and Science,2020,42(1):8-17. [18]GitHub.The Alibaba ClusterData2018 trace data [EB/OL].(2018-12-13) [2019-04-30].https://github.com /alibaba/clusterdata. [19]REISS C,TUMANOV A,GANGER G R,et al.Towards understanding heterogeneous clouds at scale:Google trace analysis[R].Intel Science and Technology Center for Cloud Computing,2012. [20]LU C,YE K,XU G,et al.Imbalance in the cloud:An analysis on alibaba cluster trace [C]//2017 IEEE International Conference on Big Data (Big Data).Piscataway,NJ:IEEE,2017:2884-2892. [21]LIU Q,YU Z.The elasticity and plasticity in semi-containerized co-locating cloud workload:A view from Alibaba trace [C]//Proceedings of the ACM Symposium on Cloud Computing.New York,NY:ACM,2018:347-360. [22]CHEN W,YE K,WANG Y,et al.How does the workload look like in production cloud? Analysis and clustering of workloads on Alibaba cluster trace [C]//2018 IEEE 24th International Conference on Parallel and Distributed Systems (ICPADS).Piscataway,NJ:IEEE,2018:102-109. [23]CHENG Y,CHAI Z,ANWAR A.Characterizing co-located data-center workloads:An Alibaba case study [C]//9th ACM SIGOPS Asia-Pacific Workshop on Systems (APSys 2018).New York,NY:ACM,2018:12:1-12:3. [24]CHENG Y,ANWAR A,DUAN X.Analyzing Alibaba's co-located datacenter workloads [C]//2018 IEEE International Conference on Big Data (Big Data).Piscataway,NJ:IEEE,2018:292-297. [25]DENG L,REN Y L,XU F,et al.Resource utilization analysis of Alibaba cloud [C]//International Conference on Intelligent Computing.Berlin,German:Springer,2018:183-194. [26]JIANG C,HAN G,LIN J,et al.Characteristics of Co-allocated Online Services and Batch Jobs in Internet Data Centers:A Case Study from Alibaba Cloud[J].IEEE Access,2019,7:22495-22508. [27]DEAN J,GHEMAWATS.MapReduce:simplified data proces-sing on large clusters[J].Communications of the ACM,2008,51(1):107-113. [28]MONU M,PALS.A Review on Storage and Large-Scale Pro-cessing of Data-Sets Using Map Reduce,YARN,SPARK,AVRO,MongoDB[C]//Proceedings of International Conference on Sustainable Computing in Science,Technology and Management.Jaipur,India:SSRN,2019:1-8. [29]PRATT B,HOWBERT J J,TASMAN N I,et al.MR-tandem:parallel X! tandem using hadoop MapReduce on amazon Web services[J].Bioinformatics,2011,28(1):136-137. [30]DEDE E,GOVINDARAJU M,GUNTERD,et al.Performanceevaluation of a mongodb and hadoop platform for scientific data analysis [C]//Proceedings of the 4th ACM workshop on Scientific cloud computing.New York,NY:ACM,2013:13-20. [31]VAVILAPALLI V K,MURTHY A C,DOUGLAS C,et al.Apache Hadoop yarn:Yet another resource negotiator [C]//Proceedings of the 4th annual Symposium on Cloud Computing.New York,NY:ACM,2013:5. [32]HINDMAN B,KONWINSKI A,ZAHARIA M,et al.Mesos:A platform for fine-grained resource sharing in the data center [C]//NSDI'11. Berkeley,CA:USENTX,2011:295-308. [33]SCHWARZKOPF M,KONWINSKI A,ABD-EL-MALEK M,et al.Omega:flexible,scalable schedulers for large compute clusters [C]//Proceedings of the 8th ACM European Confe-rence on Computer Systems.New York,NY:ACM,2013:351-364. [34]OUSTERHOUT K,WENDELL P,ZAHARIA M,et al.Spar-row:distributed,low latency scheduling [C]//Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles.New York,NY:ACM,2013:69-84. [35]ZHANG Z,LI C,TAO Y,et al.Fuxi:a Fault-Tolerant Resource Management and Job Scheduling System at Internet Scale[J].Proceedings of the VLDB Endowment,2014,7(13):1393-1404. |
[1] | TIAN Yu-li, LI Ning. System Usage Analysis and Failure Analysis for Cloud Computing [J]. Computer Science, 2020, 47(12): 50-55. |
|