Computer Science ›› 2022, Vol. 49 ›› Issue (6): 245-253.doi: 10.11896/jsjkx.210400023
• Computer Graphics & Multimedia • Previous Articles Next Articles
CHENG Xiang-ming, DENG Chun-hua
CLC Number:
[1] SUN C,SHRIVASTAVA A,SINGH S,et al.Revisiting unreasonable effectiveness of data in deep learning era[C]//Procee-dings of the IEEE International Conference on Computer Vision.2017:843-852. [2] IANDOLA F N,HAN S,MOSKEWICZ M W,et al.Squeeze-Net:AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size[J].arXiv:1602.07360,2016. [3] HOWARD A G,ZHU M,CHEN B,et al.Mobilenets:Efficient convolutional neural networks for mobile vision applications[J].arXiv:1704.04861,2017. [4] ZHANG X,ZHOU X,LIN M,et al.Shufflenet:An extremelyefficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:6848-6856. [5] HINTON G,VINYALS O,DEAN J.Distilling the knowledge ina neural network[J].arXiv:1503.02531,2015. [6] WANG R Z,GAO J,HUANG S H,et al.Malicious Code Family Detection Method Based on Knowledge Distillation[J].Compu-ter Science,2021,48(1):280-286. [7] LECUN Y,BENGIO Y,HINTON G.Deep learning[J].Nature,2015,521(7553):436-444. [8] GUO Y,ZHANG L,HU Y,et al.Ms-celeb-1m:A dataset and benchmark for large-scale face recognition[C]//European Conference on Computer Vision.2016:87-102. [9] DATTAS,SHARMA G,JAWAHAR C V.Unsupervised lear-ning of face representations[C]//2018 13th IEEE International Conference on Automatic Face & Gesture Recognition(FG 2018).IEEE,2018:135-142. [10] YU H,FAN Y,CHEN K,et al.Unknownidentity rejection loss:Utilizing unlabeled data for face recognition[C]//2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW).IEEE Computer Society,2019:2662-2669. [11] HUANG C,LOY C C,TANG X.Unsupervised learning of discriminative attributes and visual representations[C]//Procee-dings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:5175-5184. [12] SCHMARJE L,SANTAROSSA M,SCHRÖDER S M,et al.A survey on semi-,self-and unsupervised techniques in image classification[J].arXiv:2002.08721,2020. [13] MASI I,WU Y,HASSNER T,et al.Deep face recognition:Asurvey[C]//2018 31st SIBGRAPI Conference on Graphics,Patterns and Images (SIBGRAPI).IEEE,2018:471-478. [14] JI C M,SONG T C.Sparse Representation-Based Classification Under Optimization Forms for Face Recognition[ J].Journal of Chongqing University of Technology(Natural Science),2020,34(2):120-126. [15] KE P F,CAI M G,WU T.Face Recognition Algorithm Based on Improved Convolutional Neural Network and Ensemble Lear-ning[J].Computer Engineering,2020,46(2):262-267,273. [16] TAO S F,LI Y F,HUANG Y F,et al.Face Detection Algo-rithm Based on Deep Residual Network and Attention Mechanism[J].Computer Engineering,2021,47(11):276-282. [17] PARKHI O M,VEDALDI A,ZISSERMAN A.Deepface recognition[C]//Proceedings of the British Machine Vision Confe-rence.2015:41.1-41.12. [18] NOROOZI M,VINJIMOOR A,FAVARO P,et al.Boostingself-supervised learning via knowledge transfer[C]//Procee-dings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:9359-9367. [19] VONGKULBHISAL J,VINAYAVEKHIN P,VISENTINI-SCARZANELLA M.Unifying heterogeneous classifiers with distillation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:3175-3184. [20] LUO P,ZHU Z,LIU Z,et al.Face model compression by distilling knowledge from neurons[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2016:3560-3566. [21] HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:7132-7141. [22] DENG J,GUO J,XUE N,et al.Arcface:Additive angular margin loss for deep face recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2019:4690-4699. [23] WANG H,WANG Y,ZHOU Z,et al.Cosface:Large margin cosine loss for deep face recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:5265-5274. [24] DEVRIES T,TAYLOR G W.Improved regularization of convolutional neural networks with cutout[J].arXiv:1708.04552,2017. [25] YUN S,HAN D,OH S J,et al.Cutmix:Regularization strategy to train strong classifiers with localizable features[C]//Procee-dings of the IEEE International Conference on Computer Vision.2019:6023-6032. [26] ZHANG K,ZHANG Z,LI Z,et al.Joint face detection andalignment using multitask cascaded convolutional networks[J].IEEE Signal Processing Letters,2016,23(10):1499-1503. [27] WANG F,XIANG X,CHENG J,et al.Normface:L2 hyper-sphere embedding for face verification[C]//Proceedings of the 25th ACM International Conference on Multimedia.2017:1041-1049. [28] MIRZADEH S I,FARAJTABAR M,LI A,et al.Improvedknowledge distillation via teacher assistant[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:5191-5198. |
[1] | HUANG Pu, DU Xu-ran, SHEN Yang-yang, YANG Zhang-jing. Face Recognition Based on Locality Regularized Double Linear Reconstruction Representation [J]. Computer Science, 2022, 49(6A): 407-411. |
[2] | HUANG Pu, SHEN Yang-yang, DU Xu-ran, YANG Zhang-jing. Face Recognition Based on Locality Constrained Feature Line Representation [J]. Computer Science, 2022, 49(6A): 429-433. |
[3] | CHU Yu-chun, GONG Hang, Wang Xue-fang, LIU Pei-shun. Study on Knowledge Distillation of Target Detection Algorithm Based on YOLOv4 [J]. Computer Science, 2022, 49(6A): 337-344. |
[4] | WEI Qin, LI Ying-jiao, LOU Ping, YAN Jun-wei, HU Ji-wei. Face Recognition Method Based on Edge-Cloud Collaboration [J]. Computer Science, 2022, 49(5): 71-77. |
[5] | HE Jia-yu, HUANG Hong-bo, ZHANG Hong-yan, SUN Mu-ye, LIU Ya-hui, ZHOU Zhe-hai. Review of 3D Face Reconstruction Based on Single Image [J]. Computer Science, 2022, 49(2): 40-50. |
[6] | CHEN Chang-wei, ZHOU Xiao-feng. Fast Local Collaborative Representation Based Classifier and Its Applications in Face Recognition [J]. Computer Science, 2021, 48(9): 208-215. |
[7] | CHEN Zhi-wen, WANG Kun, ZHOU Guang-yun, WANG Xu, ZHANG Xiao-dan, ZHU Hu-ming. SAR Image Change Detection Method Based on Capsule Network with Weight Pruning [J]. Computer Science, 2021, 48(7): 190-198. |
[8] | WEN He, LUO Pin-jie. Dynamic Face Recognition Based on Improved Pulse Coupled Neural Network [J]. Computer Science, 2021, 48(6A): 85-88. |
[9] | LI Fan, YAN Xing, ZHANG Xiao-yu. Optimization of GPU-based Eigenface Algorithm [J]. Computer Science, 2021, 48(4): 197-204. |
[10] | BAI Zi-yi, MAO Yi-rong , WANG Rui-ping. Survey on Video-based Face Recognition [J]. Computer Science, 2021, 48(3): 50-59. |
[11] | YANG Zhang-jing, WANG Wen-bo, HUANG Pu, ZHANG Fan-long, WANG Xin. Local Weighted Representation Based Linear Regression Classifier and Face Recognition [J]. Computer Science, 2021, 48(11A): 351-359. |
[12] | LUAN Xiao, LI Xiao-shuang. Face Anti-spoofing Algorithm Based on Multi-feature Fusion [J]. Computer Science, 2021, 48(11A): 409-415. |
[13] | LU Yao-yao, YUAN Jia-bin, HE Shan, WANG Tian-xing. Low-quality Video Face Recognition Method Based on Super-resolution Reconstruction [J]. Computer Science, 2021, 48(11A): 295-302. |
[14] | YU Liang, WEI Yong-feng, LUO Guo-liang, WU Chang-xing. Knowledge Distillation Based Implicit Discourse Relation Recognition [J]. Computer Science, 2021, 48(11): 319-326. |
[15] | WANG Run-zheng, GAO Jian, HUANG Shu-hua, TONG Xin. Malicious Code Family Detection Method Based on Knowledge Distillation [J]. Computer Science, 2021, 48(1): 280-286. |
|