Computer Science ›› 2022, Vol. 49 ›› Issue (7): 89-99.doi: 10.11896/jsjkx.210900167
• Computer Graphics & Multimedia • Previous Articles Next Articles
YANG Xiao, WANG Xiang-kun, HU Hao, ZHU Min
CLC Number:
[1]ELSISI M,MAHMOUD K,LEHTONEN M,et al.Reliable Industry 4.0 Based on Machine Learning and IoT for Analyzing,Monitoring,and Securing Smart Meters[J/OL].Sensors,2021,21(2):487.https://doi.org/10.3390/s21020487. [2]ZHOU Z G,SHI C,SHI L S,et al.A Survey on the Visual Analytics of Geospatial Data [J].Journal of Computer-Aided Design &Computer Graphics,2018 (5):747-763. [3]ZHENG Y,WU W,CHEN Y,et al.Visual analytics in urbancomputing:An overview[J].IEEE Transactions on Big Data,2016,2(3):276-296. [4]SENARATNE H,MUELLER M,BEHRISCH M,et al.Urban Mobility Analysis With Mobile Network Data:A Visual Analy-tics Approach[J].IEEE Transactions on Intelligent Transportation Systems,2018,19(5):1537-1546. [5]CAO N,LIN C,ZHU Q,et al.Voila:Visual anomaly detection and monitoring with streaming spatiotemporal data[J].IEEE Transactions on Visualization and Computer Graphics,2017,24(1):23-33. [6]ZHOU F,LIN X,LIU C,et al.A survey of visualization forsmart manufacturing[J].Journal of Visualization,2019,22(2):419-435. [7]DUTTA S,CHEN C M,HEINLEIN G,et al.In situ distribution guided analysis and visualization of transonic jet engine simulations[J].IEEE Transactions on Visualization and Computer Graphics,2016,23(1):811-820. [8]SENARATNE H,MUELLER M,BEHRISCH M,et al.Urban mobility analysis with mobile network data:A visual analytics approach[J].IEEE Transactions on Intelligent Transportation Systems,2017,19(5):1537-1546. [9]ATZORI L,IERA A,MORABITO G.The internet of things:A survey[J].Computer networks,2010,54(15):2787-2805. [10]STITZ H,GRATZL S,KRIEGER M,et al.CloudGazer:A divide-and-conquer approach to monitoring and optimizing cloud-based networks[C]//2015 IEEE Pacific Visualization Symposium(PacificVis).IEEE,2015:175-182. [11]HADLAK S,SCHUMANN H,CAP C H,et al.Supporting the visual analysis of dynamic networks by clustering associated temporal attributes[J].IEEE Transactions on Visualization and Computer Graphics,2013,19(12):2267-2276. [12]RODRÍGUEZ-MAZAHUA L,RODRÍGUEZ-ENRÍQUEZ C A,SÁNCHEZ-CERVANTES J L,et al.A general perspective of Big Data:applications,tools,challenges and trends[J].The Journal of Supercomputing,2016,72(8):3073-3113. [13]MUKOSAKA S,KOIKE H.Integrated visualization system formonitoring security in large-scale local area network[C]//2007 6th International Asia-Pacific Symposium on Visualization.IEEE,2007:41-44. [14]STEIGER M,BERNARD J,MITTELSTÄDT S,et al.Visualanalysis of time-series similarities for anomaly detection in sensor networks[J].Computer Graphics Forum,2014,33(3):401-410. [15]XU K,WANG Y,YANG L,et al.Clouddet:Interactive visualanalysis of anomalous performances in cloud computing systems[J].IEEE Transactions on Visualization and Computer Graphics,2019,26(1):1107-1117. [16]LI Z K.Condition monitoring and early warning of engine gearbox and gear processing equipment[D].Nanjing:Nanjing University of Technology,2019. [17]CARD M.Readings in information visualization:using vision to think[M].San Francisco:Morgan Kaufmann,1999. [18]SHI Y,LIU Y,TONG H,et al.Visual Analytics of Anomalous User Behaviors:A Survey [J].IEEE Transactions on Big Data,2022,8(2):377-396. [19]BORKIN M A,VO A A,BYLINSKII Z,et al.What makes a visualization memorable?[J].IEEE Transactions on Visualization and Computer Graphics,2013,19(12):2306-2315. [20]GREEN D,LINDAHL P,LEEB S,et al.Dashboard:Nonintrusive electromechanical fault detection and diagnostics[C]//2019 IEEE AUTOTESTCON.IEEE,2019:1-9. [21]MATKOVIC K,HAUSER H,SAINITZER R,et al.Process visualization with levels of detail[C]//IEEE Symposium on Information Visualization(INFOVIS 2002).IEEE,2002:67-70. [22]HARRIS R L.Information graphics:A comprehensive illustra-ted reference[M].New York:Oxford University Press,1999. [23]XIA J,ZHANG Y,YE H,et al.SuPoolVisor:a visual analytics system for mining pool surveillance[J].Frontiers of InformationTechnology & Electronic Engineering,2020,21(4):507-523. [24]WU W,ZHENG Y,QU H,et al.Boundaryseer:Visual analysis of 2d boundary changes[C]//2014 IEEE Conference on Visual Analytics Science and Technology (VAST).IEEE,2014:143-152. [25]WU W,ZHENG Y,CHEN K,et al.A visual analytics approach for equipment condition monitoring in smart factories of process industry[C]//2018 IEEE Pacific Visualization Symposium (PacificVis).IEEE,2018:140-149. [26]KIM J,LEE H,JEONG S,et al.Sound-based remote real-time multi-device operational monitoring system using a ConvolutionalNeural Network (CNN)[J].Journal of Manufacturing Systems,2021,58:431-441. [27]ZHAO Y,LUO X,LIN X,et al.Visual analytics for electromagnetic situation awareness in radio monitoring and management[J].IEEE transactions on visualization and computer graphics,2019,26(1):590-600. [28]XU P,MEI H,REN L,et al.ViDX:Visual diagnostics of assembly line performance in smart factories[J].IEEE Transactions on Visualization and Computer Graphics,2016,23(1):291-300. [29]ZHAO Y,ZHOU F,FAN X.A real-time visualization framework for IDS alerts[C]//Proceedings of the 5th International Symposium on Visual Information Communication and Interaction.2012:11-17. [30]SOKOLOVA A.New machinery condition monitoring technique based on multidimensional visualization of vibration s-discriminants[C]//10th European Conference Non-Destructive Testing 2010.2010:1779-1785. [31]WEI D,LI C,SHAO H,et al.SensorAware:visual analysis of both static and mobile sensor information[J].Journal of Visuali-zation,2021,24(3):597-613. [32]XIE C,XU W,MUELLER K.A visual analytics framework for the detection of anomalous call stack trees in high performance computing applications[J].IEEE Transactions on Visualization and Computer Graphics,2018,25(1):215-224. [33]YANG F,SHAH S L,XIAO D,et al.Improved correlation ana-lysis and visualization of industrial alarm data[J].ISA transactions,2012,51(4):499-506. [34]ZHANG Z H,ZHANG J P,CHEN D M,et al.Interactive Dimension Reordering in RadViz with Correlation Matrix [J].Pattern Recognition and Artificial Intelligence,2017,30(7):637-645. [35]SHI L,LIAO Q,HE Y,et al.SAVE:Sensor anomaly visualization engine[C]//2011 IEEE Conference on Visual Analytics Science and Technology (VAST).IEEE,2011:201-210. [36]RADO S,SPLECHTNA R,MATKOVIĆ K,et al.Towardsquantitative visual analytics with structured brushing and linked statistics[J].Computer Graphics Forum,2016,35(3):251-260. [37]KRUSKAL J B.Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis[J].Psychometrika,1964,29(1):1-27. [38]SHYU M L,CHEN S C,SARINNAPAKORN K,et al.A Novel Anomaly Detection Scheme Based on Principal Component Classifier[C]//IEEE Foundations and New Directions of Data Mi-ning Workshop,in Conjunction with the Third IEEE InternationalConference on Data Mining(ICDM'03).IEEE,2003. [39]VAN DER MAATEN L,HINTON G.Visualizing data usingt-SNE[J].Journal of Machine Learning Research,2008,9(11):2579-2605. [40]GUO X,ZHAO Y,ZHAO Y.Research on condition monitoring of wind turbines data visualization based on random forest[C]//2016 International Conference on Smart Grid and Clean Energy Technologies (ICSGCE).IEEE,2016:166-170. [41]FUJIWARA T,SAKAMOTO N,NONAKA J,et al.A visual analytics framework for reviewing multivariate time-series data with dimensionality reduction[J].IEEE Transactions on Visuali-zation and Computer Graphics,2020,27(2):1601-1611. [42]ZHOU Z,YE Z,LIU Y,et al.Visual analytics for spatial clusters of air-quality data[J].IEEE Computer Graphics and Applications,2017,37(5):98-105. [43]XIAO Y,ZHENG K,LONAPALAWONG S,et al.EcoVis:visual analysis of industrial-level spatio-temporal correlations in electricity consumption[J].Frontiers of Computer Science,2022,16(2):1-11. [44]MUELDER C,ZHU B,CHEN W,et al.Visual analysis of cloud computing performance using behavioral lines[J].IEEE Transactions on Visualization and Computer Graphics,2016,22(6):1694-1704. [45]FRUCHTERMAN T M J,REINGOLD E M.Graph drawing by force-directed placement[J].Software:Practice and Experience,1991,21(11):1129-1164. [46]MATKOVIĆ K,GRACˇANIN D,SPLECHTNA R,et al.Visual analytics for complex engineering systems:Hybrid visual stee-ring of simulation ensembles[J].IEEE Transactions on Visuali-zation and Computer Graphics,2014,20(12):1803-1812. [47]ZHAO Y,WANG L,LI S,et al.A visual analysis approach for understanding durability test data of automotive products[J].ACM Transactions on Intelligent Systems and Technology (TIST),2019,10(6):1-23. [48]ZHOU F,LIN X,LUO X,et al.Visually enhanced situationawareness for complex manufacturing facility monitoring in smart factories[J].Journal of Visual Languages & Computing,2018,44:58-69. [49]KAUPP L,NAZEMI K,HUMM B.An industry 4.0-ready visualanalytics model for context-aware diagnosis in smart manufacturing[C]//2020 24th International Conference Information Visualisation (IV).IEEE,2020:350-359. [50]GUO Y,GUO S,JIN Z,et al.Survey on Visual Analysis ofEvent Sequence Data[J].IEEE Transactions on Visualization and Computer Graphics,arXiv:2006.14291,2020. [51]HERR D,KURZHALS K,ERTL T.Visual Analysis for Spatio-Temporal Event Correlation in Manufacturing[C]//Hawaii International Conference on System Sciences.2020. [52]CHEN Y,XU P,REN L.Sequence synopsis:Optimize visualsummary of temporal event data[J].IEEE Transactions on Visualization and Computer Graphics,2017,24(1):45-55. [53]HERR D,BECK F,ERTL T.Visual analytics for decomposing temporal event series of production lines[C]//2018 22nd International Conference Information Visualisation (IV).IEEE,2018:251-259. [54]BUONO P,PLAISANT C,SIMEONE A,et al.Similarity-based forecasting with simultaneous previews:A river plot interface for time series forecasting[C]//2007 11th International Confe-rence Information Visualization (IV'07).IEEE,2007:191-196. [55]YANG W,TAVNER P J,CRABTREE C J,et al.Wind turbine condition monitoring:technical and commercial challenges[J].Wind Energy,2014,17(5):673-693. [56]TKACHEV G,FREY S,ERTL T.Local prediction models for spatiotemporal volume visualization[J].IEEE Transactions on Visualization and Computer Graphics,2019,2019,27(7):3091-3108. [57]MACHADO C G,WINROTH M P,RIBEIRO DA SILVA E H D.Sustainable manufacturing in Industry 4.0:an emerging research agenda[J].International Journal of Production Research,2020,58(5):1462-1484. [58]POSADA J,TORO C,BARANDIARAN I,et al.Visual computing as a key enabling technology for industrie 4.0 and industrial internet[J].IEEE Computer Graphics and Applications,2015,35(2):26-40. [59]ZHANG P.Visualizing production planning data[J].IEEE Computer Graphics and Applications,1996,16(5):7-10. [60]SYDOW A,KASSEL J F,ROHS M.Visualizing scheduling:Ahierarchical event-based approach on a tablet[C]//Proceedings of the 17th International Conference on Human-Computer Interaction with Mobile Devices and Services Adjunct.2015:728-734. [61]JO J,HUH J,PARK J,et al.LiveGantt:Interactively visualizing a large manufacturing schedule[J].IEEE Transactions on Visualization and Computer Graphics,2014,20(12):2329-2338. [62]WÖRNER M,ERTL T.Simulation-based visual layout planning in advanced manufacturing[C]//2013 46th Hawaii International Conference on System Sciences.IEEE,2013:1532-1541. [63]SUN D,HUANG R,CHEN Y,et al.PlanningVis:A visual analytics approach to production planning in smart factories[J].IEEE Transactions on Visualization and Computer Graphics,2019,26(1):579-589. |
[1] | SUN Lin, PING Guo-lou, YE Xiao-jun. Correlation Analysis for Key-Value Data with Local Differential Privacy [J]. Computer Science, 2021, 48(8): 278-283. |
[2] | ZHANG Qin, CHEN Hong-mei, FENG Yun-fei. Overlapping Community Detection Method Based on Rough Sets and Density Peaks [J]. Computer Science, 2020, 47(5): 72-78. |
[3] | LI Gang, WANG Chao, HAN De-peng, LIU Qiang-wei, LI Ying. Study on Multimodal Image Genetic Data Based on Deep Principal Correlated Auto-encoders [J]. Computer Science, 2020, 47(4): 60-66. |
[4] | LU Xian-guang, DU Xue-hui, WANG Wen-juan. Alert Correlation Algorithm Based on Improved FP Growth [J]. Computer Science, 2019, 46(8): 64-70. |
[5] | RU Feng, XU Jin, CHANG Qi, KAN Dan-hui. High Order Statistics Structured Sparse Algorithm for Image Genetic Association Analysis [J]. Computer Science, 2019, 46(4): 66-72. |
[6] | CHEN Zheng, TIAN Bo, HE Zeng-you. PPI Network Inference Algorithm for PCP-MS Data [J]. Computer Science, 2019, 46(12): 313-321. |
[7] | CHEN Feng, MENG Zu-qiang. Study on Heterogeneous Multimodal Data Retrieval Based on Hash Algorithm [J]. Computer Science, 2019, 46(10): 49-54. |
[8] | CHEN Li-li, ZHU Feng, SHENG Bin, CHEN Zhi-hua. Quality Evaluation of Color Image Based on Discrete Quaternion Fourier Transform [J]. Computer Science, 2018, 45(8): 70-74. |
[9] | LI Guang-pu, HUANG Miao-hua. Research Progress and Mainstream Methods of Frequent Itemsets Mining [J]. Computer Science, 2018, 45(11A): 1-11. |
[10] | WU Jun and WANG Chun-zhi. Multiple Correlation Analysis and Application of Granular Matrix Based on Big Data [J]. Computer Science, 2017, 44(Z11): 407-410. |
[11] | CUI Hong-fei, LIU Jia, GU Jing-jing and ZHUANG Yi. 3D Localization Estimation Algorithm Based on Locality Preserving Canonical Correlation Analysis in Wireless Sensor Networks [J]. Computer Science, 2017, 44(9): 105-109. |
[12] | JU An-kang, GUO Yuan-bo, ZHU Tai-ming and WANG Tong. Survey on Network Security Event Correlation Analysis Methods and Tools [J]. Computer Science, 2017, 44(2): 38-45. |
[13] | XU Jie, LIANG Jiu-zhen, WU Qin and LI Min. Kernel Canonical Correlation Analysis Feature Fusion Method and Application [J]. Computer Science, 2016, 43(1): 35-39. |
[14] | LI Ling and LI Gui-juan. Face Automatic Recognition Algorithm for Small Sample High-dimensional Features [J]. Computer Science, 2014, 41(6): 314-316. |
[15] | . Study on Mining Data Streams in WSNs for Environment Monitoring [J]. Computer Science, 2012, 39(Z11): 111-113. |
|