Computer Science ›› 2023, Vol. 50 ›› Issue (11A): 230100113-6.doi: 10.11896/jsjkx.230100113
• Artificial Intelligence • Previous Articles Next Articles
HE Minglong, ZHAO Kun, LI Weihua, LI Chuan
CLC Number:
[1]BLAIR R H,DAWSON E D,TAYLOR A W,et al.Clinical vali-dation of the FluChip-8G influenza a+ B assay for influenza type and subtype identification[J].Journal of Clinical Virology,2019,118:20-27. [2]SMITH D J,LAPEDES A S,DE JONG J C,et al.Mapping the antigenic and genetic evolution of influenza virus[J].Science,2004,305(5682):371-376. [3]SUN H,YANG J,ZHANG T,et al.Using sequence data toinfer the antigenicity of influenza virus[J].MBio,2013,4(4):e00230-13. [4]CAI Z,ZHANG T,WAN X F.A computational framework for influenza antigenic cartography[J].PLoS Computational Biology,2010,6(10):e1000949. [5]World Health Organization.Serological detection of avian influenza A(H7N9) virus infections by modified horse red blood cells haemagglutination-inhibition assay[Z].2013. [6]AMPOFO W K,AZZIZ-BAUMGARTNER E,BASHIR U,et al.Strengthening the influenza vaccine virus selection and development process:Report of the 3rd WHO Informal Consultation for Improving Influenza Vaccine Virus Selection held at WHO headquarters,Geneva,Switzerland,1-3 April 2014[J].Vaccine,2015,33(36):4368-4382. [7]KOEL B F,BURKE D F,BESTEBROER T M,et al.Substitutions near the receptor binding site determine major antigenic change during influenza virus evolution[J].Science,2013,342(6161):976-979. [8]LEE M S,CHEN J S E.Predicting antigenic variants of influenza A/H3N2 viruses[J].Emerging Infectious Diseases,2004,10(8):1385. [9]LIAO Y C,LEE M S,KO C Y,et al.Bioinformatics models for predicting antigenic variants of influenza A/H3N2 virus[J].Bioinformatics,2008,24(4):505-512. [10]LEES W D,MOSS D S,SHEPHERD A J.A computational analysis of the antigenic properties of haemagglutinin in influenza A H3N2[J].Bioinformatics,2010,26(11):1403-1408. [11]PENG Y,WANG D,WANG J,et al.A universal computational model for predicting antigenic variants of influenza A virus based on conserved antigenic structures[J].Scientific Reports,2017,7(1):42051. [12]YAO Y,LI X,LIAO B,et al.Predicting influenza antigenicityfrom Hemagglutintin sequence data based on a joint random fo-rest method[J].Scientific Reports,2017,7(1):1545. [13]KAWASHIMA S,POKAROWSKI P,POKAROWSKA M,et al.AAindex:amino acid index database,progress report 2008[J].Nucleic Acids Research,2007,36(suppl_1):D202-D205. [14]NEHER R A,BEDFORD T,DANIELS R S,et al.Prediction,dynamics,and visualization of antigenic phenotypes of seasonal influenza viruses[J].Proceedings of the National Academy of Sciences,2016,113(12):E1701-E1709. [15]YIN R,THWIN N N,ZHUANG P,et al.IAV-CNN:a 2D convolutional neural network model to predict antigenic variants of influenza A virus[J].IEEE/ACM Transactions on Computational Biology and Bioinformatics,2021,19(6):3497-3506. [16]ASGARI E,MOFRAD M R K.Continuous distributed representation of biological sequences for deep proteomics and genomics[J].PloS One,2015,10(11):e0141287. [17]ARCHETTI I,HORSFALL JR F L.Persistent antigenic variation of influenza A viruses after incomplete neutralization in ovo with heterologous immune serum[J].The Journal of Experimental Medicine,1950,92(5):441-462. [18]KIPF T N,WELLING M.Semi-supervised classification withgraph convolutional networks[J].arXiv:1609.02907,2016. [19]MORRIS D H,GOSTIC K M,POMPEI S,et al.Predictive mo-deling of influenza shows the promise of applied evolutionary biology[J].Trends in Microbiology,2018,26(2):102-118. [20]CHUNG J,GULCEHRE C,CHO K H,et al.Empirical evaluation of gated recurrent neural networks on sequence modeling[J].arXiv:1412.3555,2014. [21]HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:7132-7141. [22]NAIR V,HINTON G E.Rectified linear units improve restricted boltzmann machines[C]//Proceedings of the 27th International Conference on Machine Learning(ICML-10).2010:807-814. [23]LI M,ZHANG T,CHEN Y,et al.Efficient mini-batch training for stochastic optimization[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2014:661-670. [24]KINGMA D P,BA J.Adam:A method for stochastic optimization[J].arXiv:1412.6980,2014. [25]SRIVASTAVA N,HINTON G,KRIZHEVSKY A,et al.Dropout:a simple way to prevent neural networks from overfitting[J].Journal of Machine Learning Research,2014,15(1):1929-1958. |
[1] | LU Yuhan, CHEN Liquan, WANG Yu, HU Zhiyuan. Efficient Encrypted Image Content Retrieval System Based on SecureCNN [J]. Computer Science, 2023, 50(9): 26-34. |
[2] | LI Ke, YANG Ling, ZHAO Yanbo, CHEN Yonglong, LUO Shouxi. EGCN-CeDML:A Distributed Machine Learning Framework for Vehicle Driving Behavior Prediction [J]. Computer Science, 2023, 50(9): 318-330. |
[3] | HUANG Shuxin, ZHANG Quanxin, WANG Yajie, ZHANG Yaoyuan, LI Yuanzhang. Research Progress of Backdoor Attacks in Deep Neural Networks [J]. Computer Science, 2023, 50(9): 52-61. |
[4] | YI Qiuhua, GAO Haoran, CHEN Xinqi, KONG Xiangjie. Human Mobility Pattern Prior Knowledge Based POI Recommendation [J]. Computer Science, 2023, 50(9): 139-144. |
[5] | LI Haiming, ZHU Zhiheng, LIU Lei, GUO Chenkai. Multi-task Graph-embedding Deep Prediction Model for Mobile App Rating Recommendation [J]. Computer Science, 2023, 50(9): 160-167. |
[6] | ZHU Ye, HAO Yingguang, WANG Hongyu. Deep Learning Based Salient Object Detection in Infrared Video [J]. Computer Science, 2023, 50(9): 227-234. |
[7] | YI Liu, GENG Xinyu, BAI Jing. Hierarchical Multi-label Text Classification Algorithm Based on Parallel Convolutional Network Information Fusion [J]. Computer Science, 2023, 50(9): 278-286. |
[8] | HENG Hongjun, MIAO Jing. Fusion of Semantic and Syntactic Graph Convolutional Networks for Joint Entity and Relation Extraction [J]. Computer Science, 2023, 50(9): 295-302. |
[9] | TANG Shaosai, SHEN Derong, KOU Yue, NIE Tiezheng. Link Prediction Model on Temporal Knowledge Graph Based on Bidirectionally Aggregating Neighborhoods and Global Aware [J]. Computer Science, 2023, 50(8): 177-183. |
[10] | MA Weiwei, ZHENG Qinhong, LIU Shanshan. Study and Evaluation of Spiking Neural Network Model Based on Bee Colony Optimization [J]. Computer Science, 2023, 50(8): 221-225. |
[11] | LI Qiaojun, ZHANG Wen, YANG Wei. Fusion Neural Network-based Method for Predicting LncRNA-disease Association [J]. Computer Science, 2023, 50(8): 226-232. |
[12] | XIE Tonglei, DENG Li, YOU Wenlong, LI Ruilong. Analysis and Prediction of Cloud VM CPU Load Based on EMPC-BCGRU [J]. Computer Science, 2023, 50(8): 243-250. |
[13] | LI Rongchang, ZHENG Haibin, ZHAO Wenhong, CHEN Jinyin. Data Reconstruction Attack for Vertical Graph Federated Learning [J]. Computer Science, 2023, 50(7): 332-338. |
[14] | ZHAO Ran, YUAN Jiabin, FAN Lili. Medical Ultrasound Image Super-resolution Reconstruction Based on Video Multi-frame Fusion [J]. Computer Science, 2023, 50(7): 143-151. |
[15] | JIANG Linpu, CHEN Kejia. Self-supervised Dynamic Graph Representation Learning Approach Based on Contrastive Prediction [J]. Computer Science, 2023, 50(7): 207-212. |
|