Computer Science ›› 2024, Vol. 51 ›› Issue (6): 172-185.doi: 10.11896/jsjkx.230400106
• Computer Graphics & Multimedia • Previous Articles Next Articles
CHEN Sishuo, WANG Xiaodong, LIU Xiyang
CLC Number:
[1]SUNG H,FERLAY J,SIEGEL R L,et al.Global Cancer Statistics 2020:GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J].CA:A Cancer Journal for Clinicians,2021,71(3):209-249. [2]LOIBL S,POORTMANS P,MORROW M,et al.Breast cancer[J].The Lancet,2021,397(10286):1750-1769. [3]HOU L,SAMARAS D,KURC T M,et al.Patch-Based Convolutional Neural Network for Whole Slide Tissue Image Classification[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Las Vegas,NV,USA:IEEE,2016:2424-2433. [4]YAN R,REN F,WANG Z,et al.Breast cancer histopathological image classification using a hybrid deep neural network[J].Methods,2020,173:52-60. [5]ZHAN Y,BIAN H,CHEN Y,et al.Breast Tumor Image Classification in Bright Challenge VIA Multiple Instance Learning and Deep Transformers[C]//2022 IEEE International Symposium on Biomedical Imaging Challenges(ISBIC).Kolkata,India:IEEE,2022. [6]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isAll you Need[C]//Advances in Neural Information Processing Systems.Long Beach:Curran Associates,2017. [7]LI F,YANG Y,WEI Y,et al.Deep learning-based predictive bio-marker of pathological complete response to neoadjuvant chemotherapy from histological images in breast cancer[J].Journal of Translational Medicine,2021,19(1):348. [8]LOU X,ZHOU N,FENG L,et al.Deep Learning Model for Predicting the Pathological Complete Response to Neoadjuvant Chemoradiotherapy of Locally Advanced Rectal Cancer[J].Frontiers in Oncology,2022,12:807264. [9]HE K,ZHANG X,REN S,et al.Deep Residual Learning forImage Recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [10]CHEN R J,CHEN C,LI Y,et al.Scaling Vision Transformers to Gigapixel Images via Hierarchical Self-Supervised Learning[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).New Orleans,LA,USA:IEEE,2022:16123-16134. [11]DOSOVITSKIY A,BEYER L,KOLESNIKOV A,et al.AnImage is Worth 16×16 Words:Transformers for Image Recognition at Scale[C]//International Conference on Learning Representations.2021. [12]WAN S,GONG C,ZHONG P,et al.Hyperspectral Image Classification With Context-Aware Dynamic Graph Convolutional Network[J].IEEE Transactions on Geoscience and Remote Sensing,2021,59(1):597-612. [13]JIAO L,CHEN J,LIU F,et al.Graph Representation Learning Meets Computer Vision:A Survey[J].IEEE Transactions on Artificial Intelligence,2022.4(1):1-22. [14]PATI P,JAUME G,FONCUBIERTA-RODRÍGUEZ A,et al.Hierarchical graph representations in digital pathology[J].Me-dical Image Analysis,2022,75:102264. [15]ZHANG J,HUA Z,YAN K,et al.Joint fully convolutional and graph convolutional networks for weakly-supervised segmentation of pathology images[J].Medical Image Analysis,2021,73:102183. [16]ZHENG Y,JIANG Z,SHI J,et al.Encoding histopathologywhole slide images with location-aware graphs for diagnostically relevant regions retrieval[J].Medical Image Analysis,2022,76:102308. [17]GAO Z,LU Z,WANG J,et al.A Convolutional Neural Network and Graph Convolutional Network Based Framework for Classification of Breast Histopathological Images[J].IEEE Journal of Biomedical and Health Informatics,2022,26(7):3163-3173. [18]CHEN R J,LU M Y,WANG J,et al.Pathomic Fusion:An Integrated Framework for Fusing Histopathology and Genomic Features for Cancer Diagnosis and Prognosis[J].IEEE Transactions on Medical Imaging,2022,41(4):757-770. [19]CHEN R J,LU M Y,SHABAN M,et al.Whole Slide Images are 2D Point Clouds:Context-Aware Survival Prediction Using Patch-Based Graph Convolutional Networks[C]//MedicalImage Computing and Computer Assisted Intervention-MICCAI 2021.Cham:Springer International Publishing,2021:339-349. [20]VELIČKOVIĆ P,CUCURULL G,CASANOVA A,et al.Graph Attention Networks[C]//International Conference on Learning Representations.Vancouver,2018. [21]XU B B,CEN K Y,HUANG J J,et al.A Survey on Graph Convolutional Neural Network[J].Chinese Journal of Computers,2020,43(5):755-780. [22]YANG C,LIU Z,ZHAO D,et al.Network RepresentationLearning with Rich Text Information[C]//Proceedings of the 24th International Conference on Artificial Intelligence.2015:2111-2117. [23]PEROZZI B,AL-RFOU R,SKIENA S.DeepWalk:OnlineLearning of Social Representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Disco-very and Data Mining.2014:701-710. [24]CHAWLA N,WANG W.Accelerated Attributed Network Embedding[C]//Proceedings of the 2017 SIAM International Conference on Data Mining.Society for Industrial and Applied Mathematics,2017:633-641. [25]GROVER A,LESKOVEC J.node2vec:Scalable Feature Lear-ning for Networks.[C]//KDD:Proceedings.International Conference on Knowledge Discovery & Data Mining.New York:Association for Computing Machinery,2016:855-864. [26]MIKOLOV T,CHEN K,CORRADO G,et al.Efficient Estimation of Word Representations in Vector Space[C]//Interna-tional Conference on Learning Representations.2013. [27]HAMILTON W,YING Z,LESKOVEC J.Inductive Representation Learning on Large Graphs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.2017:1025-1035. [28]ACHANTA R,SHAJI A,SMITH K,et al.SLIC SuperpixelsCompared to State-of-the-Art Superpixel Methods[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(11):2274-2282. [29]BILGIN C,DEMIR C,NAGI C,et al.Cell-Graph Mining forBreast Tissue Modeling and Classification[C]//2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.Lyon,France:IEEE,2007:5311-5314. [30]GRAHAM S,VU Q D,RAZA S E A,et al.Hover-Net:Simultaneous segmentation and classification of nuclei in multi-tissue histology images[J].Medical Image Analysis,2019,58:101563. [31]LU C,KOYUNCU C,CORREDOR G,et al.Feature-driven local cell graph(FLocK):New computational pathology-based descriptors for prognosis of lung cancer and HPV status of oropharyngeal cancers[J].Medical Image Analysis,2021,68:101903. [32]LU W,GRAHAM S,BILAL M,et al.Capturing Cellular Topo-logy in Multi-Gigapixel Pathology Images[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops(CVPRW).Seattle,WA,USA:IEEE,2020:1049-1058. [33]MÜLLNER D.Modern hierarchical,agglomerative clustering algorithms[J].arXiv,1109.2378,2011. [34]COMANICIU D,MEER P.Mean shift:a robust approach toward feature space analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(5):603-619. [35]LEE Y,PARK J H,OH S,et al.Derivation of prognostic contextual histopathological features from whole-slide images of tumours via graph deep learning[J].Nature Biomedical Engineering,2022:1-15. [36]ZHANG M,DONG B,LI Q.Ms-Gwnn:Multi-Scale GraphWavelet Neural Network for Breast Cancer Diagnosis[C]//2022 IEEE 19th International Symposium on Biomedical Imaging(ISBI).Kolkata,India:IEEE,2022:1-5. [37]OZEN Y,AKSOY S,KOSEMEHMETOGLU K,et al.Self-Supervised Learning with Graph Neural Networks for Region of Interest Retrieval in Histopathology[C]//2020 25th International Conference on Pattern Recognition(ICPR).Milan,Italy:IEEE,2021:6329-6334. [38]CHEN Z,ZHANG J,CHE S,et al.Diagnose Like A Patholo-gist:Weakly-Supervised Pathologist-Tree Network for Slide-Level Immunohistochemical Scoring[J].Proceedings of the AAAI Conference on Artificial Intelligence,2021,35(1):47-54. [39]HOU W,HUANG H,PENG Q,et al.Spatial-HierarchicalGraph Neural Network with Dynamic Structure Learning for Histological Image Classification[C]//Medical Image Computing and Computer Assisted Intervention(MICCAI 2022).Cham:Springer Nature Switzerland,2022:181-191. [40]KIPF T N,WELLING M.Semi-Supervised Classification with Graph Convolutional Networks[C]//International Conference on Learning Representations.Toulon,2017. [41]XU K,HU W,LESKOVEC J,et al.How Powerful are Graph Neural Networks?[C]//International Conference on Learning Representations.2019. [42]ZHOU P,WU Z,WEN G,et al.Multi-scale graph classification with shared graph neural network[J].World Wide Web,2023:26(3):949-966. [43]CAI L,JI S.A Multi-Scale Approach for Graph Link Prediction[C]//34TH AAAI Conference on Artificial Intelligence.2020:3308-3315. [44]STENZINGER A,ALBER M,ALLGÄUER M,et al.Artificial intelligence and pathology:From principles to practice and future applications in histomorphology and molecular profiling[J].Seminars in Cancer Biology,2022,84:129-143. [45]KATHER J N,PEARSON A T,HALAMA N,et al.Deeplearning can predict microsatellite instability directly from histology in gastrointestinal cancer[J].Nature Medicine,2019,25(7):1054-1056. [46]SHAO D,DAI Y,LI N,et al.Artificial intelligence in clinical research of cancers[J].Briefings in Bioinformatics,2022,23(1):bbab523. [47]ROY A G,REN J,AZIZI S,et al.Does Your Dermatology Classifier Know What It Doesn’t Know? Detecting the Long-Tail of Unseen Conditions[J].Medical Image Analysis,2022,75:102274-102292. [48]CHEN T,KORNBLITH S,NOROUZI M,et al.A SimpleFramework for Contrastive Learning of Visual Representations[C]//International Conference on Machine Learning.2020. [49]BACCIU D,ERRICA F,MICHELI A,et al.A Gentle Introduction to Deep Learning for Graphs[J].Neural Networks,2020,129:203-221. [50]YING Z,YOU J,MORRIS C,et al.Hierarchical Graph Representation Learning with Differentiable Pooling[C]//Interna-tional Conference on Neural Information Processing Systems.New York:Curran Associates,2018:4805-4815. [51]MORRIS C,RITZERT M,FEY M,et al.Weisfeiler and Leman Go Neural:Higher-Order Graph Neural Networks[C]//Proceedings of the AAAI Conference on Artificial Intelligence.Hawaii,2019:4602-4609. [52]ZHOU B,KHOSLA A,LAPEDRIZA A,et al.Learning DeepFeatures for Discriminative Localization[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Las Vegas,NV,USA:IEEE,2016:2921-2929. [53]LIU Z,LI J,SHEN Z,et al.Learning Efficient ConvolutionalNetworks through Network Slimming[C]//2017 IEEE International Conference on Computer Vision(ICCV).Venice:IEEE,2017:2755-2763. [54]ACS B,RANTALAINEN M,HARTMAN J.Artificial intelligence as the next step towards precision pathology[J].Journal of Internal Medicine,2020,288(1):62-81. [55]SINGH A,SENGUPTA S,LAKSHMINARAYANAN V.Ex-plainable Deep Learning Models in Medical Image Analysis[J].Journal of Imaging,2020,6(6):52-70. [56]JAUME G,PATI P,BOZORGTABAR B,et al.Quantifying Explainers of Graph Neural Networks in Computational Pathology[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Nashville,2021:8106-8116. [57]JAUME G,PATI P,FONCUBIERTA-RODRIGUEZ A,et al.Towards Explainable Graph Representations in Digital Pathology[J].arXiv:2007.00311,2020. [58]YING Z,BOURGEOIS D,YOU J,et al.GNNExplainer:Generating Explanations for Graph Neural Networks[C]//Advances in Neural Information Processing Systems.2019:9240-9251. [59]SCHWARZENBERG R,HÜBNER M,HARBECKE D,et al.Layerwise Relevance Visualization in Convolutional Text Graph Classifiers[C]//Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing.2019:58-62. [60]POPE P E,KOLOURI S,ROSTAMI M,et al.ExplainabilityMethods for Graph Convolutional Neural Networks[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Long Beach,CA,USA:IEEE,2019:10764-10773. [61]CHATTOPADHAY A,SARKAR A,HOWLADER P,et al.Grad-CAM++:Generalized Gradient-Based Visual Explanations for Deep Convolutional Networks[C]//2018 IEEE Winter Conference on Applications of Computer Vision(WACV).Lake Tahoe,NV:IEEE,2018:839-847. [62]BRANCATI N,ANNICIELLO A M,PATI P,et al.BRACS:A Dataset for BReAst Carcinoma Subtyping in H&E Histology Images[J].Database,2021,2022(2022):baac093. [63]ARESTA G.BACH:Grand challenge on breast cancer histology images[J].Medical Image Analysis,2019,56:122-139. [64]ARAÚJO T,ARESTA G,CASTRO E,et al.Classification of breast cancer histology images using Convolutional Neural Networks[J].PLOS ONE,2017,12(6)::e0177544. [65]BOLHASANI H,AMJADI E,TABATABAEIAN M,et al.A histopathological image dataset for grading breast invasive ductal carcinomas[J].Informatics in Medicine Unlocked,2020,19:100341. [66]SPANHOL F A,OLIVEIRA L S,PETITJEAN C,et al.A Dataset for Breast Cancer Histopathological Image Classification[J].IEEE Transactions on Biomedical Engineering,2016,63(7):1455-1462. [67]CLARK K,VENDT B,SMITH K,et al.The Cancer ImagingArchive(TCIA):Maintaining and Operating a Public Information Repository[J].Journal of Digital Imaging,2013,26(6):1045-1057. [68]THE CANCER GENOME ATLAS NETWORK.Comprehen-sive molecular portraits of human breast tumours[J].Nature,2012,490(7418):61-70. [69]WANG M,ZHENG D,YE Z,et al.Deep Graph Library:AGraph-Centric,Highly-Performant Package for Graph Neural Networks[J].arXiv:1909.01315,2019. [70]FEY M,LENSSEN J E.Fast Graph Representation Learning with PyTorch Geometric[J].arXiv:1903.02428,2019. [71]JAUME G,PATI P,ANKLIN V,et al.HistoCartography:AToolkit for Graph Analytics in Digital Pathology[C]//Procee-dings of the MICCAI Workshop on Computational Pathology.PMLR,2021:117-128. [72]WU Z,PAN S,CHEN F,et al.A Comprehensive Survey onGraph Neural Networks[J].IEEE Transactions on Neural Networks and Learning Systems,2021,32(1):4-24. [73]WANG Z H,SHEN H W,CAO Q,et al.Survey on Graph Classification[J].Journal of Software,2022,33(1):171-192. |
[1] | CHU Xiaoxi, ZHANG Jianhui, ZHANG Desheng, SU Hui. Browser Fingerprint Tracking Based on Improved GraphSAGE Algorithm [J]. Computer Science, 2024, 51(6): 409-415. |
[2] | LU Min, YUAN Ziting. Graph Contrast Learning Based Multi-graph Neural Network for Session-based RecommendationMethod [J]. Computer Science, 2024, 51(5): 54-61. |
[3] | LAN Yongqi, HE Xingxing, LI Yingfang, LI Tianrui. New Graph Reduction Representation and Graph Neural Network Model for Premise Selection [J]. Computer Science, 2024, 51(5): 193-199. |
[4] | ZHANG Liying, SUN Haihang, SUN Yufa , SHI Bingbo. Review of Node Classification Methods Based on Graph Convolutional Neural Networks [J]. Computer Science, 2024, 51(4): 95-105. |
[5] | ZHANG Tao, LIAO Bin, YU Jiong, LI Ming, SUN Ruina. Benchmarking and Analysis for Graph Neural Network Node Classification Task [J]. Computer Science, 2024, 51(4): 132-150. |
[6] | LUO Zeyang, TIAN Hua, DOU Yingtong, LI Manwen, ZHANG Zehua. Fake Review Detection Based on Residual Networks Fusion of Multi-relationship Review Features [J]. Computer Science, 2024, 51(4): 314-323. |
[7] | CHEN Yufeng , HUANG Zengfeng. Framework and Algorithms for Accelerating Training of Semi-supervised Graph Neural Network Based on Heuristic Coarsening Algorithms [J]. Computer Science, 2024, 51(3): 48-55. |
[8] | HUANG Kun, SUN Weiwei. Traffic Speed Forecasting Algorithm Based on Missing Data [J]. Computer Science, 2024, 51(3): 72-80. |
[9] | CHEN Wei, ZHOU Lihua, WANG Yafeng, WANG Lizhen, CHEN Hongmei. Community Search Based on Disentangled Graph Neural Network in Heterogeneous Information Networks [J]. Computer Science, 2024, 51(3): 90-101. |
[10] | ZHANG Guohao, WANG Yi, ZHOU Xi, WANG Baoquan. Deep Collaborative Truth Discovery Based on Variational Multi-hop Graph Attention Encoder [J]. Computer Science, 2024, 51(3): 109-117. |
[11] | ZHENG Cheng, SHI Jingwei, WEI Suhua, CHENG Jiaming. Dual Feature Adaptive Fusion Network Based on Dependency Type Pruning for Aspect-basedSentiment Analysis [J]. Computer Science, 2024, 51(3): 205-213. |
[12] | XU Tianyue, LIU Xianhui, ZHAO Weidong. Knowledge Graph and User Interest Based Recommendation Algorithm [J]. Computer Science, 2024, 51(2): 55-62. |
[13] | JIN Yu, CHEN Hongmei, LUO Chuan. Interest Capturing Recommendation Based on Knowledge Graph [J]. Computer Science, 2024, 51(1): 133-142. |
[14] | WU Jiawei, FANG Quan, HU Jun, QIAN Shengsheng. Pre-training of Heterogeneous Graph Neural Networks for Multi-label Document Classification [J]. Computer Science, 2024, 51(1): 143-149. |
[15] | GUO Yuxing, YAO Kaixuan, WANG Zhiqiang, WEN Liangliang, LIANG Jiye. Black-box Graph Adversarial Attacks Based on Topology and Feature Fusion [J]. Computer Science, 2024, 51(1): 355-362. |
|