Computer Science ›› 2024, Vol. 51 ›› Issue (6): 317-324.doi: 10.11896/jsjkx.230900076
• Artificial Intelligence • Previous Articles Next Articles
SHI Jiyun1, ZHANG Chi1, WANG Yuqiao1, LUO Zhaojing2, ZHANG Meihui1
CLC Number:
[1]ZHOU Q,YANG N,WEI F,et al.Neural document summarization by jointly learning to ßscore and select sentences[C]//ACL 2018-56th Annual Meeting of the Association for Computational Linguistics,Proceedings of the Conference(Long Papers).Melbourne,VIC,Australia:2018:654-663. [2]RUSH A M,CHOPRA S,WESTON J.A neural attention model for abstractive sentence summarization[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing.Association for Computational Linguistics,2015:379-389. [3]LIU Y.Fine-tune BERT for extractive summarization[J].ar-Xiv:1903.10318,2019. [4]ZHONG M,LIU P,CHEN Y,et al.Extractive summarization as text matching[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.Seattle,Washington,USA:ACL,2020:6197-6208. [5]SEE A,LIU P J,MANNING C D.Get to the point:Summa-rization with pointer-generator networks[J].arXiv:1704.04368,2017. [6]PAULUS R,XIONG C,SOCHER R.A deep reinforced model for abstractive summarization[J].arXiv:1705.04304,2017. [7]LI W,XIAO X,LYU Y,et al.Improving neural abstractive document summarization with structural regulariza-tion[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.2018:4078-4087. [8]LUO Z,YEUNG S H,ZHANG M,et al.MLCask:Efficientmanagement of component evolution in collaborative data analytics pipelines[C]//2021 IEEE International Conference on Data Engineering(ICDE).IEEE,2021:1655-1666. [9]LUO Z,CAI S,GAO J,et al.Adaptive lightweight regularization tool for complex analytics[C]//2018 IEEE International Conference on Data Engineering(ICDE).IEEE,2018:485-496. [10]LUO Z,CAI S,WANG Y,et al.Regularized Pairwise Relationship based Analytics for Structured Data[C]//Proceedings of the ACM on Management of Data.2023:1-27. [11]SONG Y,TIAN Y,WANG N,et al.Summarizing medical conversations via identifying important utterances[C]//Proceedings of the 28th International Conference on Computational Linguistics.2020:717-729. [12]ZHANG Y Z,JIANG Z T,ZHANG T,et al.MIE:A medical information extractortowards medical dialogues[C]//Proceedings of the 58th Annual Meeting of the Association for Computa-tional Linguistics.Association for Computational Linguistics.2020:6460-6469. [13]ENARVI S,AMOIA M,TEBA M A,et al.Generating medical reports from patient-doctor conversations using sequence-to-sequence models[C]//Proceedings of the First Workshop on Na-tural Language Processing for Medical Conversations.2020:22-30. [14]CHINTAGUNTA B,KATARIYA N,AMATRIAIN X,et al.Medically aware gpt-3 as a data generator for medical dialogue summarization[C]//Machine Learning for Healthcare Confe-rence.PMLR,2021:354-372. [15]KRISHNA K,KHOSLA S,BIGHAM J,et al.Generating soap notes from doctor-patient conversations using modular summarization techniques[C]//ACL-IJCNLP 2021-59th Annual Mee-ting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing,Proceedings of the Conference.Virtual,Online:2021:4958-4972. [16]LEWIS M,LIU Y,GOYAL N,et al.Bart:Denoising sequence-to-sequence pre-training for natural language generation,translation,and comprehension[J].arXiv:1910.13461,2019. [17]SOUZA F,NOGUEIRA R,LOTUFO R.Portuguese named en-tity recognition using BERT-CRF[J].arXiv:1909.10649,2019. [18]LIU P,YUAN W,FU J,et al.Pre-train,prompt,and predict:A systematic survey of prompting methods in natural language processing[J].ACM Computing Surveys,2023,55(9):1-35. [19]REBUFFI S A,BILEN H,VEDALDI A.Learning multiple vi-sual domains with residual adapters[J].arXiv:1705.08045,2017. [20]CHEN W,LI Z,FANG H,et al.A benchmark for automatic medical consultation system:frameworks,tasks and da-tasets[J].Bioinformatics,2023,39(1):817. [21]ZHANG N,CHEN M,BI Z,et al.Cblue:A chinese biomedical language understanding evaluation benchmark[J].arXiv:2106.08087,2021. [22]LIN C Y.Rouge:A package for automatic evaluation of summa-ries[C]//Text Summarization Branches out.2004:74-81. [23]QI W,GONG Y,YAN Y,et al.Prophetnet-x:Large-scale pre-training models for english,chinese,multi-lingual,dialog,and code generation[J].arXiv:2104.08006,2021. [24]CHEN X,YE J,ZU C,et al.How Robust is GPT-3.5 to Predecessors?A Comprehensive Study on Language Understanding Tasks[J].arXiv:2303.00293,2023. |
[1] | ZHANG Zhiyuan, ZHANG Weiyan, SONG Yuqiu, RUAN Tong. Multilingual Event Detection Based on Cross-level and Multi-view Features Fusion [J]. Computer Science, 2024, 51(5): 208-215. |
[2] | YI Liu, GENG Xinyu, BAI Jing. Hierarchical Multi-label Text Classification Algorithm Based on Parallel Convolutional Network Information Fusion [J]. Computer Science, 2023, 50(9): 278-286. |
[3] | LIU Zhe, YIN Chengfeng, LI Tianrui. Chinese Spelling Check Based on BERT and Multi-feature Fusion Embedding [J]. Computer Science, 2023, 50(3): 282-290. |
[4] | HE Wenhao, WU Chunjiang, ZHOU Shijie, HE Chaoxin. Study on Short Text Clustering with Unsupervised SimCSE [J]. Computer Science, 2023, 50(11): 71-76. |
[5] | HOU Yu-tao, ABULIZI Abudukelimu, ABUDUKELIMU Halidanmu. Advances in Chinese Pre-training Models [J]. Computer Science, 2022, 49(7): 148-163. |
[6] | ZHAO Dan-dan, HUANG De-gen, MENG Jia-na, DONG Yu, ZHANG Pan. Chinese Entity Relations Classification Based on BERT-GRU-ATT [J]. Computer Science, 2022, 49(6): 319-325. |
[7] | LIU Shuo, WANG Geng-run, PENG Jian-hua, LI Ke. Chinese Short Text Classification Algorithm Based on Hybrid Features of Characters and Words [J]. Computer Science, 2022, 49(4): 282-287. |
[8] | HOU Hong-xu, SUN Shuo, WU Nier. Survey of Mongolian-Chinese Neural Machine Translation [J]. Computer Science, 2022, 49(1): 31-40. |
[9] | NI Hai-qing, LIU Dan, SHI Meng-yu. Chinese Short Text Summarization Generation Model Based on Semantic-aware [J]. Computer Science, 2020, 47(6): 74-78. |
|