Computer Science ›› 2024, Vol. 51 ›› Issue (10): 362-371.doi: 10.11896/jsjkx.230800203

• Artificial Intelligence • Previous Articles     Next Articles

Open FaaS-based Multi-edge Management Framework

LIN Jingfeng1,2.3, LI Ming1,2.3, CHEN Xing1,2,3, MO Yuchang4   

  1. 1 College of Computer and Data Science,Fuzhou University,Fuzhou 350116,China
    2 Key Laboratory of Spatial Data Mining & Information Sharing,Ministry of Education,Fuzhou 350002,China
    3 Fujian Key Laboratory of Network Computing and Intelligent Information Processing(Fuzhou University),Fuzhou 350116,China
    4 Fujian Province University Key Laboratory of Computational Science,Huaqiao University,Quanzhou,Fujian 362021,China
  • Received:2023-08-31 Revised:2024-01-18 Online:2024-10-15 Published:2024-10-11
  • About author:LIN Jingfeng,born in 1999,postgra-duate.His main research interests include edge computing and system software.
    CHEN Xing,born in 1985,Ph.D,professor,is a distinguished member of CCF(No.35725M).His main research interests include software systems engineering,systems software and cloud computing.
  • Supported by:
    National Natural Science Foundation of China(62072108),Central Funds Guiding the Local Science and Techno-logy Development(2022L3004),Fuzhou-Xiamen-Quanzhou National Independent Innovation Demonstration Zone Collaborative Innovation Platform(2022FX5) and Fujian Province Technology and Economy Integration Service Platform(2023XRH001).

Abstract: Mobile edge computing(MEC) is a cutting-edge technology that utilizes the computing power provided by edge nodes close to mobile devices to improve performance.Some existing state-of-the-art computation offloading mechanisms support dynamic offloading of applications at the function granularity.Function as a service(FaaS),as a typical paradigm of the serverless architecture,enables a new way of building and scaling applications at function granularity.FaaS provides ideal resource elasticity compared to traditional approaches.OpenFaaS,as a popular open-source FaaS project,enables a good foundation for building FaaS platforms.Integrating advanced computation offload mechanism with FaaS solution(OpenFaaS) is meaningful and challenging.To this end,a multi-edge management framework based on OpenFaaS is designed and implemented in the paper.The framework rea-lizes the construction and status management of OpenFaaS on multiple edges.Also,for the functions that need to be deployed,they are reconstructed and then are deployed to OpenFaaS.Furthermore,at runtime,the framework is capable of flexibly scheduling function execution among multiple OpenFaaS instances.The framework is evaluated for 5 real-world Java intelligent applications.Results show that,compared to local invocation,the proposed framework saves response time by 10.49%~49.36% on average and the framework can effectively manage multiple edges.

Key words: Serverless architecture, Function as a service, OpenFaaS, Computation offloading, Mobile edge computing

CLC Number: 

  • TP399
[1]LIU C,CAO Y,LUO Y,et al.A new deep learning-based food recognition system for dietary assessment on an edge computing service infrastructure [J].IEEE Transactions on Services Computing,2017,11(2):249-261.
[2]BRAUD T,BIJARBOONEH F H,CHATZOPOULOS D,et al.Future networking challenges:The case of mobile augmented reality[C]//Proceedings of IEEE 37th International Conference on Distributed Computing Systems(ICDCS).Piscataway,NJ:IEEE,2017:1796-1807.
[3]SU Z,HUI Y,LUAN T H.Distributed task allocation to enable collaborative autonomous driving with network softwarization [J].IEEE Journal on Selected Areas in Communications,2018,36(10):2175-2189.
[4]JEONG S,SIMEONE O,KANG J.Mobile edge computing via a UAV-mounted cloudlet:Optimization of bit allocation and path planning [J].IEEE Transactions on Vehicular Technology,2017,67(3):2049-2063.
[5]ZHAO T,LIU J,WANG Y,et al.Towards low-cost sign lan-guage gesture recognition leveraging wearables [J].IEEE Transactions on Mobile Computing,2019,20(4):1685-1701.
[6]YANG F,LI J,LEI T,et al.Architecture and key technologies for Internet of Vehicles:a survey [J].Journal of Communications and Information Networks,2017,2(2):1-17.
[7]ELGENDY I A,ZHANG W,TIAN Y C,et al.Resource allocation and computation offloading with data security for mobile edge computing[J].Future Generation Computer Systems,2019,100:531-541.
[8]MACH P,BECVAR Z.Mobile edge computing:A survey on architecture and computation offloading[J].IEEE communications surveys & tutorials,2017,19(3):1628-1656.
[9]ETSI.Enabling Multi-access Edge Computing in Internet-of- Things:how to deploy ETSI MEC and oneM2M [EB/OL].(2023-06) [2023-08-18].https://www.etsi.org/images/files/ETSIWhitePapers/ETSI-WP59-Enabling-Multi-access-Edge-Com-puting-in-iot.pdf.
[10]XU C Z,YU Z B.Research on core technology and application of cloud computing[J].Integrated Technology,2012,1(4):1-3.
[11]MAO Y,YOU C,ZHANG J,et al.A survey on mobile edge computing:The communication perspective[J].IEEE Communications Surveys & Tutorials,2017,19(4):2322-2358.
[12]TRAN T X,HAJISAMI A,PANDEY P,et al.Collaborativemobile edge computing in 5G networks:New paradigms,scena-rios,and challenges[J].IEEE Communications Magazine,2017,55(4):54-61.
[13]SHI W,CAO J,ZHANG Q,et al.Edge computing:Vision and challenges[J].IEEE internet of things journal,2016,3(5):637-646.
[14]FOX G C,ISHAKIAN V,MUTHUSAMY V,et al.Status of serverless computing and function-as-a-service(faas) in industry and research[J].arXiv:1708.08028,2017.
[15]AWS.Lambda [EB/OL].[2023-08-18].https://aws.amazon.com/lambda/.
[16]Microsoft.Azure Functions [EB/OL].[2023-08-18].https://azure.microsoft.com/en-us/services/functions/.
[17]Google.Google Cloud Functions[EB/OL].[2023-08-18].ht-tps://cloud.google.com/functions/.
[18]Alibaba.Alibaba Cloud Function Compute[EB/OL].[2023-08-18].https://www.alibabacloud.com/product/function-compute.
[19]Alex Ellis.OpenFaaS [EB/OL].(2022-12-14) [2023-08-18].https://github.com/openfaas/faas/blob/master/README.md.
[20]dgrove-oss.OpenWhisk [EB/OL].(2023-01-26) [2023-08-18].https://github.com/apache/openwhisk/blob/master/README.md.
[21]psschwei.Knative:Kubernetes-based platform to deploy andmanage modern serverless workloads [EB/OL].(2023-01-26) [2023-08-18].https://github.com/knative/docs/blob/main/README.md.
[22]NETO J L D,YU S Y,MACEDO D F,et al.ULOOF:A user level online offloading framework for mobile edge computing[J].IEEE Transactions on Mobile Computing,2018,17(11):2660-2674.
[23]CHEN X,LI M,ZHONG H,et al.FUNOff:Offloading Applications At Function Granularity for Mobile Edge Computing[J/OL].https://doi.org/10.1109/TMC.2023.3240741.
[24]XIANG Q L,PENG X,AKASAKA I,et al.FaaS Migration Approach for Monolithic Applications Based on Dynamic and Static Analysis[J].Journal of Software,2021,33(11):4061-4083.
[25]Docker [EB/OL].[2023-08-18].https://www.docker.com/.
[26]k8s-ci-robot.Kubernetes [EB/OL].(2023-05-04) [2023-08-18].https://github.com/kubernetes/kubernetes/blob/master/README.md.
[27]ZHAO P,TIAN H,CHEN K C,et al.Context-aware TDD configuration and resource allocation for mobile edge computing[J].IEEE Transactions on Communications,2019,68(2):1118-1131.
[28]HOU X,REN Z,WANG J,et al.Reliable computation offloa-ding for edge-computing-enabled software-defined IoV[J].IEEE Internet of Things Journal,2020,7(8):7097-7111.
[29]CHEN X,CHEN J,LIU B,et al.AndroidOff:Offloading androidapplication based on cost estimation[J/OL].https://doi.org/10.1016/j.j-ss.2019.110418.
[30]CHEN X,CHEN S,MA Y,et al.An adaptive offloading framework for android applications in mobile edge computing[J].Science China Information Sciences,2019,62:1-17.
[31]Alex Elli.OpenFaaS Template [EB/OL].(2023-06-28) [2023-08-18].https://github.com/openfaas/templates.
[32]jlerbsc.Javaparser [EB/OL].(2023-07-01) [2023-08-18].https://github.com/javaparser/javaparser/blob/master/readme.md.
[33]Red Hat.What is a container registry[EB/OL].(2022-06-27) [2023-08-18].https://www.redhat.com/en/topics/cloud-native-apps/what-is-a-container-registry.
[34]Pawel Szulik.cAdvisor [EB/OL].(2023-05-10) [2023-08-18].https://github.com/google/cadvisor/blob/master/README.md.
[35]pr00se.Prometheus [EB/OL].(2023-02-27) [2018-08-18].https://github.com/prometheus/prometheus/blob/main/README.md.
[36]ECMA-404.JSON [EB/OL].[2023-08-18].https://www.json.org/json-en.html.
[37]Wiki.NFS [EB/OL].(2023-08-10) [2023-08-18].https://wiki.archlinux.org/title/NFS.
[38]KubeSphere.All-in-One Installation of Kubernetes and Kube-Sphere on Linux [EB/OL].(2023-04-04) [2023-08-18].https://www.kubesph-ere.io/zh/docs/v3.3/quick-start/all-in-one-on-linux/.2022.
[39]CHEN X,ZHANG J,LIN B,et al.Energy-Efficient Offloading for DNN-Based Smart IoT Systems in Cloud-Edge Environments[J].IEEE Transactions on Parallel and Distributed Systems,2022,33(3):683-697.
[40]of-watchdog [EB/OL].(2023-05-21) [2023-08-18].https://github.com/openfaas/of-watchdog/blob/master/README.md.
[41]CHUN B G,IHM S,MANIATIS P,et al.Clonecloud:elastic execution between mobile device and cloud[C]//Proceedings of the Sixth Conference on Computer Systems.New York:ACM,2011:301-314.
[42]ZHANG Y,HUANG G,LIU X,et al.Refactoring android java code for on-demand computation offloading[J].ACM Sigplan Notices,2012,47(10):233-248.
[43]KEMP R,PALMER N,KIELMANN T,et al.Cuckoo:a computation offloading framework for smartphones[C]//Proceedings of Mobile Computing,Applications,and Services:Second International ICST Conference,Mobi-CASE 2010.Berlin:Springer,2012:59-79.
[44]XU M,QIAN F,ZHU M,et al.Deepwear:Adaptive local offloading for on-wearable deep learning[J].IEEE Transactions on Mobile Computing,2019,19(2):314-330.
[45]CHEN X,LI M,ZHONG H,et al.DNNOff:offloading DNN-based intelligent IoT applications in mobile edge computing[J].IEEE Transactions on Industrial Informatics,2021,18(4):2820-2829.
[46]LI M,ZHANG J,LIN B,et al.MultiOff:offloading support and service deployment for multiple IoT applications in mobile edge computing[J].Supercomput,2022,78:15123-15153.
[1] XUE Jianbin, DOU Jun, WANG Tao, MA Yuling. Scheme for Maximizing Secure Communication Capacity in UAV-assisted Edge Computing Networks [J]. Computer Science, 2024, 51(6A): 230800032-7.
[2] WANG Zhihong, WANG Gaocai, ZHAO Qifei. Multi-objective Optimization of D2D Collaborative MEC Based on Improved NSGA-III [J]. Computer Science, 2024, 51(3): 280-288.
[3] ZHAO Xiaoyan, ZHAO Bin, ZHANG Junna, YUAN Peiyan. Study on Cache-oriented Dynamic Collaborative Task Migration Technology [J]. Computer Science, 2024, 51(2): 300-310.
[4] LIU Xingguang, ZHOU Li, ZHANG Xiaoying, CHEN Haitao, ZHAO Haitao, WEI Jibo. Edge Intelligent Sensing Based UAV Space Trajectory Planning Method [J]. Computer Science, 2023, 50(9): 311-317.
[5] LIN Xinyu, YAO Zewei, HU Shengxi, CHEN Zheyi, CHEN Xing. Task Offloading Algorithm Based on Federated Deep Reinforcement Learning for Internet of Vehicles [J]. Computer Science, 2023, 50(9): 347-356.
[6] ZHANG Naixin, CHEN Xiaorui, LI An, YANG Leyao, WU Huaming. Edge Offloading Framework for D2D-MEC Networks Based on Deep Reinforcement Learningand Wireless Charging Technology [J]. Computer Science, 2023, 50(8): 233-242.
[7] CHEN Xuzhan, LIN Bing, CHEN Xing. Stackelberg Model Based Distributed Pricing and Computation Offloading in Mobile Edge Computing [J]. Computer Science, 2023, 50(7): 278-285.
[8] LEI Xuemei, LIU Li, WANG Qian. MEC Offloading Model Based on Linear Programming Relaxation [J]. Computer Science, 2023, 50(6A): 211200229-5.
[9] CHEN Che, ZHENG Yifeng, YANG Jingmin, YANG Liwei, ZHANG Wenjie. Dynamic Energy Optimization Strategy Based on Relay Selection and Queue Stability [J]. Computer Science, 2023, 50(6A): 220100082-8.
[10] CHEN Yipeng, YANG Zhe, GU Fei, ZHAO Lei. Resource Allocation Strategy Based on Game Theory in Mobile Edge Computing [J]. Computer Science, 2023, 50(2): 32-41.
[11] ZHENG Hongqiang, ZHANG Jianshan, CHEN Xing. Deployment Optimization and Computing Offloading of Space-Air-Ground Integrated Mobile Edge Computing System [J]. Computer Science, 2023, 50(2): 69-79.
[12] WENG Jie, LIN Bing, CHEN Xing. Multi-edge Server Load Balancing Strategy Based on Game Theory [J]. Computer Science, 2023, 50(11A): 221200150-8.
[13] XUE Jianbin, AN Na, WANG Qi, ZHANG Han. Study on NOMA-MEC System Based on JTORATPAIA in Emergency Communication Scenarios [J]. Computer Science, 2023, 50(11A): 221000240-8.
[14] GUO Yingya, WANG Lijuan, GENG Haijun. Edge Server Placement Algorithm Based on Spectral Clustering [J]. Computer Science, 2023, 50(10): 248-257.
[15] SUN Hui-ting, FAN Yan-fang, MA Meng-xiao, CHEN Ruo-yu, CAI Ying. Dynamic Pricing-based Vehicle Collaborative Computation Offloading Scheme in VEC [J]. Computer Science, 2022, 49(9): 242-248.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!