Computer Science ›› 2024, Vol. 51 ›› Issue (11): 73-80.doi: 10.11896/jsjkx.231000198
• Database & Big Data & Data Science • Previous Articles Next Articles
LIU Pengyi1, HU Jie1,2,3,4, WANG Hongjun1,2,3,4, PENG Bo1,2,3,4
CLC Number:
[1] LIN Z P,ZHAO K.Graph Filter-based Multi-view AttributedGraph Clustering[C]//Proceedings of the International Joint Conference on Artificial Intelligence.2021:2723-2729. [2] ZHANG Y R,CHEN E H,JIN B B,et al.Clustering based behavior sampling with long sequential data for CTR prediction[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval.2022:2195-2200. [3] FAN S H,WANG X,SHI C,et al.One multi graph autoenco-der for multi-view graph clustering[C]//Proceedings of the Web Conference 2020.2020:3070-3076. [4] CHENG J F,WANG Q Q,TAO Z Q,et al.Multi-view attributegraph convolution networks for clustering[C]//Proceedings of the twenty-ninth International Conference on International Joint Conference on Artificial Intelligence.2021:2973-2979. [5] PAN E,ZHAO K.Multi-view contrastive graph clustering[J].Advances in Neural Information Processing Systems,2021,34:2148-2159. [6] CHEN M S,LIN J Q,LI X L,et al.Representation learning in multi-view clustering:A literature review[J].Data Science and Engineering,2022,7(3):225-241. [7] CHEN Y Y,XIAO X L,HUA Z Y,et al.Adaptive transitionprobability matrix learning for multiview spectral clustering[J].IEEE Transactions on Neural Networks and Learning Systems,2021,33(9):4712-4726. [8] ZHANG P,LIU X W,XIONG J,et al.Consensus one-stepmulti-view subspace clustering[J].IEEE Transactions on Knowledge and Data Engineering,2020,34(10):4676-4689. [9] WANG S W,LIU X W,ZHU X Z,et al.Fast parameter-freemulti-view subspace clustering with consensus anchor guidance[J].IEEE Transactions on Image Processing,2021,31:556-568. [10] LIU S Y,WANG S W,ZHANG P,et al.Efficient one-passmulti-view subspace clustering with consensus anchors[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2022:7576-7584. [11] CHEN Y Y,WANG S Q,PENG C,et al.Generalized nonconvex low-rank tensor approximation for multi-view subspace clustering[J].IEEE Transactions on Image Processing,2021,30:4022-4035. [12] GAO Q X,XIA W,WAN Z Z,et al.Tensor-SVD based graph learning for multi-view subspace clustering[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:3930-3937. [13] WANG X,JI H Y,SHI C,et al.Heterogeneous graph attention network[C]//Proceedings of the World Wide Web Conference.2019:2022-2032. [14] LIU L,CHEN P,LUO G C,et al.Scalable multi-view clustering with graph filtering[J].Neural Computing and Applications,2022,34(19):16213-16221. [15] XU K Y L,HU W H,LESKOVEC J,et al.How powerful are graph neural networks?[J].arXiv:1810.00826,2018. [16] COUTINO M,ELVIN I,AND GEERT L.Advances in distributed graph filtering[J].IEEE Transactions on Signal Processing,2019,67(9):2320-2333. [17] ISUFI E,FERNANDO G,DAVID I,et al.Graph filters for signal processing and machine learning on graphs[J].arXiv:2211.08854,2022. [18] DONG X W,THANOU D,TONI L,et al.Graph signal proces-sing for machine learning:A review and new perspectives[J].IEEE Signal Processing Magazine,2020,37(6):117-127. [19] ZHANG X T,LIU H,LI Q M,et al.Attributed graph clustering via adaptive graph convolution[J].arXiv:1906.01210,2019. [20] WANG B,CHEN Y,SHENG J F,et al.Attributed Graph Embedding Based on Attention with Cluster[J].Mathematics,2022,10(23):4563. [21] WANG J,LI W X,HOU C Y,et al.HCL:Improving GraphRepresentation with Hierarchical Contrastive Learning[C]//Proceedings of the International Semantic Web Conference.Springer,2022:108-124. [22] JIN M,ZHENG Y Z,LI Y F,et al.Multi-scale contrastive siamese networks for self-supervised graph representation learning[J].arXiv:2105.05682,2021. [23] HASSANI K,AMIR H K.Contrastive multi-view representa-tion learning on graphs[C]//Proceedings of the International Conference on Machine Learning.PMLR,2020:4116-4126. [24] MA Z R,KANG Z,LUO G C,et al.Towards clustering-friendly representations:Subspace clustering via graph filtering[C]//Proceedings of the 28th ACM International Conference onMulti-media.2020:3081-3089. [25] KANG Z,LIN Z P,ZHU X F,et al.Structured graph learning for scalable subspace clustering:From single view to multiview[J].IEEE Transactions on Cybernetics,2021,52(9):8976-8986. [26] KANG Z,PAN H Q,CH HOI S,et al.Robust graph learning from noisy data[J].IEEE Transactions on Cybernetics,2019,50(5):1833-1843. [27] KANG Z,ZHOU W T,ZHAO Z T,et al.Large-scale multi-view subspace clustering in linear time[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:4412-4419. [28] KINGMA D P,BA J.Adam:A method for stochastic optimization[J].arXiv:1412.6980,2014. [29] ZHANG H M,QIU L W,YI L L,et al.Scalable multiplex network embedding[C]//Proceedings of the International Joint Conference on Artificial Intelligence.2018:3082-3088. [30] LIU W Y,CHEN P Y,YEUNG S L,et al.Principled multilayer network embedding[C]//Proceedings of the 2017 IEEE International Conference on Data Mining Workshops(ICDMW).IEEE,2017:134-141. [31] XIA R K,PAN Y,DU L,et al.Robust multi-view spectral clus-tering via low-rank and sparse decomposition[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2014. [32] NIE F P,LI J,LI X L.Self-weighted Multiview Clustering with Multiple Graphs[C]//Proceedings of the International Joint Conference on Artificial Intelligence.2017:2564-2570. |
[1] | LI Zichen, YI Xiuwen, CHEN Shun, ZHANG Junbo, LI Tianrui. Government Event Dispatch Approach Based on Deep Multi-view Network [J]. Computer Science, 2024, 51(5): 216-222. |
[2] | ZHENG Wenping, WANG Fumin, LIU Meilin, YANG Gui. Graph Clustering Algorithm Based on Node Clustering Complexity [J]. Computer Science, 2023, 50(11): 77-87. |
[3] | ZHANG Hua-wei, LU Xin-dong, ZHU Xiao-ming, SUN Jun-tao. Structure Preserved Multi-view Subspace Clustering Based on t-SVD [J]. Computer Science, 2022, 49(11A): 210800215-6. |
[4] | ZHANG Fan, HE Wen-qi, JI Hong-bing, LI Dan-ping, WANG Lei. Multi-view Dictionary-pair Learning Based on Block-diagonal Representation [J]. Computer Science, 2021, 48(1): 233-240. |
[5] | ZHONG Ying-yu, CHEN Song-can. High-order Multi-view Outlier Detection [J]. Computer Science, 2020, 47(9): 99-104. |
[6] | LU Xian-hua, WANG Hong-jun. Design of Distributed News Clustering System Based on Big Data Computing Framework [J]. Computer Science, 2019, 46(11A): 220-223. |
[7] | WEN Wen, CHEN Ying, CAI Rui-chu, HAO Zhi-feng, WANG Li-juan. Emotion Classification for Readers Based on Multi-view Multi-label Learning [J]. Computer Science, 2018, 45(8): 191-197. |
[8] | FEI Peng, LIN Hong-fei, YANG Liang, XU Bo and Gulziya ANIWAR. Multi-view Ensemble Framework for Constructing User Profile [J]. Computer Science, 2018, 45(1): 179-182. |
[9] | BIAN Zhai-an, LI Hui-jia, CHEN Jun-hua, MA Yu-han and ZHAO Dan. Distributed and Heterogeneous Multi-agent System for Attributed Graph Clustering [J]. Computer Science, 2017, 44(Z6): 407-413. |
[10] | SHI Lin-bin, YU Zheng-tao, YAN Xin, SONG Hai-xia and HONG Xu-dong. Project Topic Model Construction Based on Semi-supervised Graph Clustering [J]. Computer Science, 2015, 42(5): 119-123. |
[11] | . New Regularization Method of Co-training [J]. Computer Science, 2012, 39(7): 215-218. |
[12] | . Research and Implementation on Visualization System for PPI Network [J]. Computer Science, 2011, 38(12): 232-235. |
|