Computer Science ›› 2024, Vol. 51 ›› Issue (11): 307-320.doi: 10.11896/jsjkx.231200078
• Information Security • Previous Articles Next Articles
TAN Pengliu, XU Teng, TU Ruoxin
CLC Number:
[1] NASIR M H,ARSHAD J,KHAN M M,et al.Scalable blockchains-A systematic review[J].Future Generation Computer Systems,2022,126:136-162. [2] HAN R,YU J,LIN H,et al.On the Security and Performance of Blockchain Sharding[J].Cryptology ePrint Archive,2021,2021:1-15. [3] LUU L,NARAYANAN V,ZHENG C,et al.A Secure Sharding Protocol For Open Blockchains[C]//Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security.2016:17-30. [4] KOKORIS-KOGIAS E,JOVANOVIC P,GASSER L,et al.OmniLedger:A Secure,Scale-Out,Decentralized Ledger via Sharding[C]//2018 IEEE Symposium on Security and Privacy(SP).2018:583-598. [5] ZAMANI M,MOVAHEDI M,RAYKOVA M.RapidChain:Scaling Blockchain via Full Sharding[C]//Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security.New York,NY,USA:Association for Computing Machinery,2018:931-948. [6] LIU Y,LIU J,VAZ SALLES M A,et al.Building blocks of sharding blockchain systems:Concepts,approaches,and open problems[J].Computer Science Review,2022,46:100513. [7] LI Y,WANG J,ZHANG H.A survey of state-of-the-art sharding blockchains:Models,components,and attack surfaces[J].Journal of Network and Computer Applications,2023,217(8):1.1-1.19. [8] HASHIM F,SHUAIB K,ZAKI N.Sharding for Scalable Block-chain Networks[J].SN Computer Science,2022,4(1):2. [9] XU Y,SHAO J,SLAATS T,et al.MWPoW+:A Strong Consensus Protocol for Intra-Shard Consensus in Blockchain Sharding[J].ACM Transactions on Internet Technology,2023,23(2):34:1-34:27. [10] CHEN R,WANG L,PENG C,et al.An Effective Sharding Consensus Algorithm for Blockchain Systems[J].Electronics,2022,11(16):2597. [11] WANG K Y,JIANG X,JIA L P,et.al.Throughput Model of Starlike Sharding Structure for Blockchains and Its Applications[J].Journal of Software,2023,34(9):4294-4309. [12] AL-BASSAM M,SONNINO A,BANO S,et al.Chainspace:A Sharded Smart Contracts Platform[J].arXiv:1708.03778,2017. [13] MANUSKIN A,MIRKIN M,EYAL I.Ostraka:Secure Block-chain Scaling by Node Sharding[C]//2020 IEEE European Symposium on Security and Privacy Workshops(EuroS&PW).IEEE.2020:397-406. [14] CAI Z,LIANG J,CHEN W,et al.Benzene:Scaling Blockchain With Cooperation-Based Sharding[J].IEEE Transactions on Parallel and Distributed Systems,2022,34(2):639-654. [15] BEZ M,FORNARI G,VARDANEGA T.The scalability challenge of ethereum:An initial quantitative analysis[C]//2019 IEEE International Conference on Service-Oriented System Engineering(SOSE).2019:167-176. [16] BURDGES J,CEVALLOS A,CZABAN P,et al.Overview ofPolkadot and its Design Considerations[J].arXiv:2005.13456,2020. [17] CHEN H,WANG Y.SSChain:A full sharding protocol for public blockchain without data migration overhead[J].Pervasive and Mobile Computing,2019,59:101055. [18] XIAO F,LAI T,GUAN Y,et al.Application of BlockchainSharding Technology in Chinese Medicine Traceability System[J].Computers,Materials & Continua,2023,76(1):35-48. [19] SUN E Y,LIANG J M,LIU J B.Blockchain Sharding Optimization Scheme Based on Virtualization[C]//Intelligent Information Processing Industrialisation Branch,China High-Tech Industrialisation Research Association.2022. [20] WANG J,WANG S,ZHANG Q,et al.A two-layer consortium blockchain with transaction privacy protection based on sharding technology[J].Journal of Information Security and Applications,2023,74:103452. [21] AMIRI M J,AGRAWAL D,EL ABBADI A.SharPer:ShardingPermissioned Blockchains Over Network Clusters[C]//Procee-dings of the 2021 International Conference on Management of Data.2021:76-88. [22] MAO C,GOLAB W.Sharding Techniques in the Era of Blockchain[C]//2021 40th International Symposium on Reliable Distributed Systems(SRDS).2021:343-344. [23] CHA K J.Research on blockchain sharding strategy and its application in traditional Chinese medicine data query[D].Nanjing:Nanjing University of Chinese Medicine,2022. [24] ZHANG P,GUO W,LIU Z,et al.Optimized Blockchain Shar-ding Model Based on Node Trust and Allocation[J].IEEE Transactions on Network and Service Management,2023,20(3):2804-2816. [25] ZHANG M,LI J,CHEN Z,et al.CycLedger:A Scalable and Secure Parallel Protocol for Distributed Ledger via Sharding[C]//2020 IEEE International Parallel and Distributed Processing Symposium(IPDPS).IEEE,2020:358-367. [26] RANA R,KANNAN S,TSE D,et al.Free2Shard:Adversary-resistant Distributed Resource Allocation for Blockchains[J].Proceedings of the ACM on Measurement and Analysis of Computing Systems,2022,6(1):11:1-11:38. [27] YUN J,GOH Y,CHUNG J M.Trust-based shard distribution scheme for fault-tolerant shard blockchain networks[J].IEEE Access,2019,7:135164-135175. [28] TIAN J,XU H,TIAN J.SLChain:A secure and low-storagepressure sharding blockchain[J].Concurrency and Computation:Practice and Experience,2024,36(3):e7918.1-e7918.15. [29] LADOSZ P,WENG L,KIM M,et al.Exploration in deep reinforcement learning:A survey[J].Information Fusion,2022,85:1-22. [30] ZHANG J,HONG Z,QIU X,et al.SkyChain:A Deep Reinforcement Learning-Empowered Dynamic Blockchain Sharding System[C]//Proceedings of the 49th International Conference on Parallel Processing.New York,NY,USA:Association for Computing Machinery,2020:1-11. [31] LIN Y,GAO Z,DU H,et al.DRL-based adaptive sharding for blockchain-based federated learning[J].IEEE Transactions on Communications,2023,41(11):3504-3516. [32] YUN J,GOH Y,CHUNG J M.DQN-Based OptimizationFramework for Secure Sharded Blockchain Systems[J].IEEE Internet of Things Journal,2021,8(2):708-722. [33] LIU C,WAN J,LI L,et al.Throughput Optimization for Blockchain System with Dynamic Sharding[J].Electronics,2023,12(24):4915. [34] WANG J D,LI Q.Improved practical Byzantine fault tolerance consensus algorithm based on Raft algorithm[J].Journal of Computer Applications,2023,43(1):122-129. [35] BAI S Z,CHEN M J.Research on Layering and Sharding ofBlockchain for Industrial Internet[J].Computer Engineering,2023,49(3):58-66,79. [36] LI C,HUANG H,ZHAO Y,et al.Achieving Scalability andLoad Balance across Blockchain Shards for State Sharding[C]//2022 41st International Symposium on Reliable Distributed Systems(SRDS).IEEE,2022:284-294. [37] LI J,NING Y.Blockchain Transaction Sharding Algorithmbased on Account-Weighted Graph[J].IEEE Access,2024,12:24672-24684. [38] CAI X,GENG S,ZHANG J,et al.A Sharding Scheme-BasedMany-Objective Optimization Algorithm for Enhancing Security in Blockchain-Enabled Industrial Internet of Things[J].IEEE Transactions on Industrial Informatics,2021,17(11):7650-7658. [39] HONG Z,GUO S,LI P.Scaling Blockchain via Layered Sharding[J].IEEE Journal on Selected Areas in Communications,2022,40(12):3575-3588. [40] HUANG H,PENG X,ZHAN J,et al.BrokerChain:A Cross-Shard Blockchain Protocol for Account/Balance-based State Sharding[C]//IEEE INFOCOM 2022-IEEE Conference on Computer Communications.2022:1968-1977. [41] SET S K,PARK G S.Service-Aware Dynamic Sharding Ap-proach for Scalable Blockchain[J].IEEE Transactions on Ser-vices Computing,2023,16(4):2954-2969. [42] MU K,WEI X.EfShard:Toward Efficient State Sharding Blockchain via Flexible and Timely State Allocation[J].IEEE Transactions on Network and Service Management,2023,20(3):2817-2829. [43] ZHANG Y,PAN S,YU J.TxAllo:Dynamic Transaction Allocation in Sharded Blockchain Systems[C]//2023 IEEE 39th International Conference on Data Engineering(ICDE).2023:721-733. [44] MIZRAHI A,ROTTENSTREICH O.State Sharding withSpace-aware Representations[C]//2020 IEEE International Conference on Blockchain and Cryptocurrency(ICBC).2020:1-9. [45] TENNAKOON D,GRAMOLI V.Dynamic Blockchain Sharding[C]//5th International Symposium on Foundations and Applications of Blockchain 2022(FAB 2022).Schloss Dagstuhl-Leibniz-Zentrum für Informatik,2022. [46] ZHENG P,XU Q,ZHENG Z,et al.Meepo:Sharded Consortium Blockchain[C]//2021 IEEE 37th International Conference on Data Engineering(ICDE).2021:1847-1852. [47] LIU Y,LIU J,LI D,et al.FleetChain:A Secure Scalable and Responsive Blockchain Achieving Optimal Sharding[C]//QIU M.Algorithms and Architectures for Parallel Processing.Cham:Springer International Publishing,2020:409-425. [48] FATHI F,BAGHANI M,BAYAT M.Light-PerIChain:Using lightweight scalable blockchain based on node performance and improved consensus algorithm in IoT systems[J].Computer Communications,2024,213:246-259. [49] WANG Y,WANG W,ZENG Y,et al.Grading Shard:A newsharding protocol to improve blockchain throughput[J].Peer-to-Peer Networking and Applications,2023,16(3):1327-1339. [50] LI M,WANG W,ZHANG J.LB-Chain:Load-Balanced andLow-Latency Blockchain Sharding via Account Migration[J].IEEE Transactions on Parallel & Distributed Systems,2023,34(10):2797-2810. [51] XU J,MING Y,WU Z,et al.X-Shard:Optimistic Cross-Shard Transaction Processing for Sharding-Based Blockchains[J].IEEE Transactions on Parallel & Distributed Systems,2024,35(4):548-559. [52] JIA L,LIU Y,WANG K,et al.Estuary:A Low Cross-Shard Blockchain Sharding Protocol Based on State Splitting[J].IEEE Transactions on Parallel & Distributed Systems,2024,35(3):405-420. [53] WANG Y,LI J,LIU W,et al.Efficient Concurrent Execution of Smart Contracts in Blockchain Sharding[J].Security and Communication Networks,2021,2021:e6688168. |
[1] | WANG Dong, LI Xiaoruo, ZHU Bingnan. Transaction Granularity Modifiable Consortium Blockchain Scheme Based on Dual Merkel Trees Block Structure [J]. Computer Science, 2024, 51(9): 408-415. |
[2] | ZANG Wenyang, LYU Jinlai. Study on Time Rotation Notary Group Model Based on Threshold Signature [J]. Computer Science, 2024, 51(8): 403-411. |
[3] | XIANG Yanjie, HUANG Xiaofang, XIANG Kefeng, ZHENG Ji’nan. Blockchain Certificateless Encryption Mechanism Based on National Secret Algorithm [J]. Computer Science, 2024, 51(8): 440-446. |
[4] | SUN Li. Application,Challenge and New Strategy of Block Chain Technology in Metaverse [J]. Computer Science, 2024, 51(7): 373-379. |
[5] | LI Zhiyuan, XU Binglei, ZHOU Yingyi. Blockchain Anonymous Transaction Tracking Method Based on Node Influence [J]. Computer Science, 2024, 51(7): 422-429. |
[6] | GAO Yuzhao, NIE Yiming. Survey of Multi-agent Deep Reinforcement Learning Based on Value Function Factorization [J]. Computer Science, 2024, 51(6A): 230300170-9. |
[7] | ZHU Jun, ZHANG Guoyin, WAN Jingjing. Study on Data Security Framework Based on Identity and Blockchain Integration [J]. Computer Science, 2024, 51(6A): 230400056-5. |
[8] | LAN Yajie, MA Ziqiang, CHEN Jiali, MIAO Li, XU Xin. Survey on Application of Searchable Attribute-based Encryption Technology Based on Blockchain [J]. Computer Science, 2024, 51(6A): 230800016-14. |
[9] | TAN Jingqi, XUE Lingyan, HUANG Haiping, CHEN Long, LI Yixuan. Data Security Management Scheme Based on Editable Medical Consortium Chain [J]. Computer Science, 2024, 51(6A): 240400056-8. |
[10] | KANG Zhong, WANG Maoning, MA Xiaowen, DUAN Meijiao. New Design of Redactable Consortium Blockchain Scheme Based on Multi-user Chameleon Hash [J]. Computer Science, 2024, 51(6A): 230600004-6. |
[11] | GENG Qian, CHUAI Ziang, JIN Jian. Operational Consistency Model Based on Consortium Blockchain for Inter-organizational Data Exchange [J]. Computer Science, 2024, 51(6A): 230800145-9. |
[12] | TIAN Hongliang, XIAN Mingjie, GE Ping. Fine Grained Security Access Control Mechanism Based on Blockchain [J]. Computer Science, 2024, 51(6A): 230400080-7. |
[13] | ZANG Hongrui, YANG Tingting, LIU Hongbo, MA Kai. Study on Cryptographic Verification of Distributed Federated Learning for Internet of Things [J]. Computer Science, 2024, 51(6A): 230700217-5. |
[14] | ZHANG Ruirong, NIU Baoning, FAN Xing. Multi-attribute Blockchain Decentralization Degree Measurement Model [J]. Computer Science, 2024, 51(5): 382-389. |
[15] | LI Fengyun, CHEN Mingming, WANG Lin, LI Peng , JU Xianyin. Study on Trust Management Mechanism of Internet of Vehicles Based on Blockchain [J]. Computer Science, 2024, 51(4): 381-387. |
|