Computer Science ›› 2024, Vol. 51 ›› Issue (11A): 240300071-9.doi: 10.11896/jsjkx.240300071
• Image Processing & Multimedia Technology • Previous Articles Next Articles
LUO Huilan, GUO Yuchen
CLC Number:
[1]LONG J,SHELHAMER E,DARRELLT.Fully convolutionalnetworks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2015:3431-3440. [2]RONNEBERGER O,FISCHER P,BROXT.U-net:Convolu-tional networks for biomedical image segmentation[C]//Medical image computing and computer-assisted intervention-MICCAI 2015:18th international conference,Munich,Germany,October 5-9,2015,proceedings,part III 18.Springer International Publishing,2015:234-241. [3]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isAll you Need[C]//Proceedings of the 31st International Conference on Neural Information Processing System.Long Beach,USA:Curran Associates Inc.:6000-6010. [4]DOSOVITSKIY A,BEYER L,KOLESNIKOV A,et al.An Image is Worth 16x16 Words:Transformers for Image Recognition at Scale[J].arXiv:2010.11929,2010. [5]WANG H,XIE S,LIN L,et al.Mixed transformer u-net formedical image segmentation[C]//2022 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP 2022).IEEE,2022:2390-2394. [6]HO J,KALCHBRENNER N,WEISSENBORM D,et al.Axial Attention in Multidim-ensional Transformers[EB/OL].[2023-08-27].https://arxiv.org/pdf/1912.12180.pdf. [7]OKTAY O,SCHLEMPER L L,FOLGOC M C,et al.Attention U-Net:Learning Where to Look for the Pancreas [EB/OL].[2023-08-27].https://arxiv.org/pdf/1804.03999.pdf. [8]ÇIÇEK Ö,ABDULKADIR A,LIENKAMPS S,et al.3D U-Net:learning dense volumetric segmentation from sparse annotation[C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2016:19th International Conference,Athens,Greece,October 17-21,2016,Proceedings,Part II 19.Springer International Publishing,2016:424-432. [9]XIAO X,LIAN S,LUO Z,et al.Weighted res-unet for high-quality retina vessel segmentation[C]//2018 9th International Conference on Information Technology in Medicine and Education(ITME).IEEE,2018:327-331. [10]ZHOU Z,RAHMAN SIDDIQUEE M M,TAJBAKHSH N,et al.Unet++:A nested u-net architecture for medical image segmentation[C]//Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support:4th International Workshop,DLMIA 2018,and 8th International Workshop,ML-CDS 2018,Held in Conjunction with MICCAI 2018,Granada,Spain,September 20,2018,Proceedings 4.Springer International Publishing,2018:3-11. [11]HUANG H,LIN L,TONG R,et al.Unet 3+:A full-scale connected unet for medical image segmentation[C]//IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP 2020).IEEE,2020:1055-1059. [12]JI S Y,XIAO Z Y.Integrated context and multi-scale features in thoracic organs segmentation[J] Journal of Image and Graphics,26(9):2135-2145. [13]MA J L,OU Y K,MAZ P,et al.Multiscale adaptive fusion network based algorithm for liver tumor detection[J].Journal of Image and Graphics,2023,28(1):260-276. [14]WAN X J,ZHOU Y Y,SHEN M F,et al.Multi-scale context information fusion for instance segmentation[J].Journal of Image and Graphics,2023,28(2):495-509. [15]YU F,KOLTUN V.Multi-scale context aggregation by dilated convolutions[EB/OL].[2023-08-27].https://arxiv.org/pdf/1511.07122.pdf. [16]ZHAO H,SHI J,QI X,et al.Pyramid scene parsing network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:2881-2890. [17]YANG H,BAI Z Y.CoT-Trans UNet CoT-TransUNet:Light-weight context Transformer medical image Segmentation network[J].Computer Engineering and Applications,2023,59(3):218-225. [18]AGHDAM E K,AZAD R,ZARVANIM,et al.Attention swinu-net:Cross-contextual attention mechanism for skin lesion segmentation[C]//2023 IEEE 20th International Symposium on Biomedical Imaging(ISBI).IEEE,2023:1-5. [19]HUANG Z,WANG X,HUANG L,et al.Ccnet:Criss-cross attention for semantic segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:603-612. [20]CHEN J,LU Y,YU Q,et al.TransUNet:Transformers Make Strong Encoders for Medical Image Segmentation [EB/OL].(2023-08-27).https://arxiv.org/pdf/2102.04306.pdf. [21]LIU Z,LIN Y,CAO Y,et al.Swin transformer:Hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:10012-10022. [22]CAO H,WANG Y,CHEN J,et al.Swin-unet:Unet-like puretransformer for medical image segmentation[C]//European Conference on Computer Vision.Cham:Springer Nature Switzerland,2022:205-218. [23]VALANARASU J M J,OZA P,HACIHALILOGLU I,et al.Medical transformer:Gated axial-attention for medical image segmentation[C]//Medical Image Computing and Computer Assisted Intervention-MICCAI 2021:24th International Conference,Strasbourg,France,September 27-October 1,2021,proceedings,part I 24.Springer International Publishing,2021:36-46. [24]GUO M H,LIU Z N,MU T J,et al.Beyond self-attention:External attention using two linear layers for visual tasks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,45(5):5436-5447. [25]HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [26]GUO M,ZHANG Y,LIU T.Gaussian transformer:a light-weight approach for natural language inference[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2019:6489-6496. [27]MILLETARI F,NAVAB N,AHMADI S A.V-net:Fully convolutional neural networks for volumetric medical image segmentation[C]//2016 Fourth International Conference on 3D Vision(3DV).IEEE,2016:565-571. [28]FU S,LU Y,WANG Y,et al.Domain adaptive relational reasoning for 3d multi-organ segmentation[C]//Medical Image Computing and Computer Assisted Intervention-MICCAI 2020:23rd International Conference,Lima,Peru,October 4-8,2020,Proceedings,Part I 23.Springer International Publishing,2020:656-666. [29]XIE J,ZHU R,WU Z,et al.FFUNet:A novel feature fusionmakes strong decoder for medical image segmentation[J].IET signal processing,2022,16(5):501-514. [30]HATAMIZADEH A,TANG Y,NATH V,et al.Unetr:Transformers for 3d medical image segmentation[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.2022:574-584. [31]HATAMIZADEH A,NATH V,TANG Y,et al.Swin unetr:Swin transformers for semantic segmentation of brain tumors in mri images[C]//International MICCAI brainlesion workshop.Cham:Springer International Publishing,2021:272-284. [32]AZAD R,HEIDARI M,SHARIATNIAM,et al.Transdeeplab:Convolution-free transformer-based deeplab v3+ for medical image segmentation[C]//International Workshop on PRedictive Intelligence In MEdicine.Cham:Springer Nature Switzerland,2022:91-102. |
[1] | SHAN Xinxin, LI Kai, WEN Ying. Medical Image Segmentation Network Integrating Full-scale Feature Fusion and RNN with Attention [J]. Computer Science, 2024, 51(5): 100-107. |
[2] | JIANG Haotian, WANG Qizhi, HUANG Yanglin, ZHANG Yaqin andHU Kai. Medical Image Segmentation Based on Multi-scale Edge Guidance [J]. Computer Science, 2023, 50(11A): 220900059-7. |
[3] | ZHANG Fu-chang, ZHONG Guo-qiang, MAO Yu-xu. Neural Architecture Search for Light-weight Medical Image Segmentation Network [J]. Computer Science, 2022, 49(10): 183-190. |
[4] | YE Zhong-yu, WU Meng-lin. Choroidal Neovascularization Segmentation Combining Temporal Supervision and Attention Mechanism [J]. Computer Science, 2021, 48(8): 118-124. |
[5] | TANG Si-yuan, XING Jun-feng and YANG Min. New Method for Medical Image Segmentation Based on BP Neural Network [J]. Computer Science, 2017, 44(Z6): 240-243. |
[6] | ZHANG Hui, ZHU Jia-ming and TANG Wen-jie. Image Segmentation Algorithm Based on Clustering and Improved Double Level Set [J]. Computer Science, 2017, 44(Z6): 198-201. |
[7] | TANG Wen-jie, ZHU Jia-ming and ZHANG Hui. Segmentation Algorithm of Medical Images Based on Multi-resolution Double Level Set [J]. Computer Science, 2017, 44(Z11): 189-192. |
[8] | ZHANG Hui, ZHU Jia-ming, CHEN Jing and WU Jie. Level Set Medical Image Segmentation Method Combining Watershed Algorithm [J]. Computer Science, 2016, 43(Z11): 193-196. |
[9] | SHI Yong-gang, TAN Ji-shuang and LIU Zhi-wen. Renal Cortex Segmentation Using Graph Cuts and Level Sets [J]. Computer Science, 2016, 43(7): 290-293. |
[10] | LAN Hong. Interactive Medical Image Segmentation Algorithm Optimized by Multi-thresholds [J]. Computer Science, 2013, 40(9): 296-299. |
[11] | . Threshold-based Segmentation for 3D Medical Volumetric Images [J]. Computer Science, 2013, 40(1): 269-272. |
[12] | . Improved Medical Image Segmentation Algorithm Based on Laplacian Level Set [J]. Computer Science, 2012, 39(8): 278-280. |
[13] | . [J]. Computer Science, 2008, 35(10): 236-237. |
|