Computer Science ›› 2024, Vol. 51 ›› Issue (11A): 240300108-5.doi: 10.11896/jsjkx.240300108

• Big Data & Data Science • Previous Articles     Next Articles

Properties and Applications of Average Approximation Accuracy

ZHANG Xiawei1, KONG Qingzhao2   

  1. 1 School of Mathematics and Statistics,Xiamen University of Technology,Xiamen,Fujian 361024,China
    2 College of Science,Jimei University,Xiamen,Fujian 361021,China
  • Online:2024-11-16 Published:2024-11-13
  • About author:ZHANG Xiawei,born in 1981,master,associate professor.Her main research interests include granular computing,artificial intelligence and network diagnostic.
    KONG Qingzhao,born in 1978,Ph.D,associate professor.His main research interests include granular computing and artificial intelligence.
  • Supported by:
    Natural Science Foundation of Fujian Province,China(2020J01707).

Abstract: Average approximation accuracy is an important concept in rough set theory,which has only been proposed in recent years.In this paper,the mathematical structure of average approximation accuracy is first analyzed,and another new explanation for average approximation accuracy is provided.Then,we focus on discussing several important properties of average approximation accuracy,and find that average approximation accuracy can characterize the knowledge representation ability of rough set models more effectively than traditional methods.Finally,the applications of average approximation accuracy in incomplete information tables and feature selection are discussed,respectively.These research achievements will enrich the content of rough set theory and expand its application in practical problems.

Key words: Rough set, Approximation accuracy, Attribute reduction, Incomplete information table

CLC Number: 

  • TP182
[1]ZADEH L.Fuzzy sets [J].Information and Control,1965,8:338-353.
[2]RAMESH DHANASEELAN F,JEYA SUTHA M.Detection of breast cancer based on fuzzy frequent itemsets mining [J].IRBM,2021,42(3):198-206.
[3]LEE H,HSIEH C J,LEE J S.Local critic training for model-parallel learning of deep neural networks [J].IEEE Transactions on Neural Networks and Learning Systems,2022,33(9):4424-4436.
[4]ZHANG B,ZHANG L.Theory and applications of problem sol-ving [M].North Holland Publishing,Amsterdam,1992.
[5]YAO Y Y.Three-way decisions with probabilisticrough sets[J].Information Sciences,2010,180(3):341-353.
[6]YAO Y Y.Three-way decision and granular computing [J].International Journal of Approximate Reasoning,2018,103:107-123.
[7]PAWLAK Z.Rough sets [J].International Journal of Computing and Information Science,1982,11(5):341-356.
[8]KONG Q Z,ZHANG X W,XU W H,et al.A novel granular computing model based on three-way decision [J].International Journal of Approximate Reasoning,2022,144:92-112.
[9]KONG Q Z,ZHANG X W,XU W H,et al.Attribute reducts of multi-granulation information system [J].Artificial Intelligence Review,2020,53(2):1353-1371.
[10]XU W H,HUANG M,JIANG Z Y,et al.Graph-based unsupervised feature selection for interval-valued information system [J/OL].https://doi.org/10.1109/TNNLS.2023.3263684.
[11]KONG Q Z,CHANG X E.Rough set model based on variableuniverse [J].CAAI Transactions on Intelligence Technology,2022,7(3):503-511.
[12]KONG Q Z,XU W H,ZHANG D X.A comparative study of different granular structures induced from the information systems [J].Soft Computing,2022,26(1):105-122.
[13]KONG Q Z,CHANG X E.Two kinds of average approximation accuracy [J].CAAI Transactions on Intelligence Technology,2024,9(2):481-490.
[14]PAWLAK Z.Information systems theoretical foundations [J].Information Systems,1981,6(3):205-218.
[15]WIERMAN M J.Measuring uncertainty in rough set theory[J].International Journal of General Systems,1999,28(4/5):283-297.
[16]PAWLAK Z.Rough sets.Theoretical aspects of reasoning about data [M].Kluwer Academic Publishers,Dordrecht,1991.
[17]MI J S,WU W Z,ZHANG W X.Approaches to knowledge reduction based on variable precision rough set model [J].Information Sciences,2004,159(3/4):255-272.
[18]MIAO D Q,ZHAO Y,YAO Y Y,et al.Relative reducts in consistent and inconsistent decision tables of the Pawlak rough set model [J].Information Sciences,2009,179(24):4140-4150.
[19]WANG F,LIANG J Y,QIAN Y H.Attribute reduction:a dimension incremental strategy [J].Knowledge-Based Systems,2013,39:95-108.
[20]YANG Y Y,CHEN D G,DONG Z.Novel algorithms of attri-bute reduction with variable precision rough set model [J].Neurocomputing,2014,139:336-344.
[21]YUAN J L,CHEN M,JIANG T,et al.Complete tolerance relation based parallel filling forincomplete energy big data[J].Knowledge-Based Systems,2017,132:215-225.
[22]CHEN J,SHAO J.Jackknife variance estimation for nearest-neighbor imputation [J].Journal of the American Statistical Association.2001,96(453):260-269.
[23]SALAMA A S,El-BARBARY O G.Topological approach to retrieve missing values in incomplete information systems [J].Journal of the Egyptian Mathematical Society,2017,25:419-423.
[24]ZHOU X Z,HUANG B,LI H X,et al.Rough set theory andmethod for knowledge acquisition in incomplete information systems[D].Nanjing:Nanjing University Press,2010.
[25]HU X,ZHANG H,YANG C M,et al.Regularized spectral clustering with entropy perturbation [J].IEEE Transactions on Big Data,2021,7(6):967-972.
[26]KONG Q Z,WANG W T,XU W H,et al.A method of dataanalysis based on division-mining-fusion strategy [J].Information Sciences,2024,666:120450.
[27]JENSEN R,QIANG S.Semantics-preserving dimensionality reduction:rough and fuzzy-rough-based approaches [J].IEEE Transactions on Knowledge and Data Engineering,2004,16(12):1457-1471.
[28]YAO Y Y.Interpreting concept learning in cognitive informatics and granular computing [J].IEEE Transactions on Systems Man and Cybernetics B,2009,39(4):855-866.
[29]ZHANG J B,LI T R,RUAN D,et al.A parallel method forcomputing rough set approximations [J].Information Sciences,2012,194:209-223.
[30]XU W H,YUAN K H,LI W T,et al.An emerging fuzzy feature selection method using composite entropy-based uncertainty measure and data distribution [J].IEEE Transactions on Emerging Topics in Computational Intelligence,2023,7(1):76-88.
[1] ZHENG Yu, XUE Zhan’ao, LYU Mingming, XU Jiucheng. Multi-granularity Intuitive Fuzzy Rough Set Model Based on θ Operator [J]. Computer Science, 2024, 51(8): 83-96.
[2] BI Sheng, ZHAI Yanhui, LI Deyu. Decision Implication Preserving Attribute Reduction in Decision Context [J]. Computer Science, 2024, 51(7): 89-95.
[3] SUN Lin, MA Tianjiao. Multilabel Feature Selection Based on Fisher Score with Center Shift and Neighborhood IntuitionisticFuzzy Entropy [J]. Computer Science, 2024, 51(7): 96-107.
[4] SONG Shuxuan, ZHANG Yuhong, WAN Renxia, MIAO Duoqian. Attribute Reduction of Discernibility Matrix Based on Three-way Decision [J]. Computer Science, 2024, 51(11A): 231100176-6.
[5] LIU Jin, MI Jusheng, LI Zhongling, LI Meizheng. Dual Three-way Concept Lattice Based on Composition of Concepts and Its Concept Reduction [J]. Computer Science, 2023, 50(6): 122-130.
[6] YANG Ye, WU Weizhi, ZHANG Jiaru. Optimal Scale Selection and Rule Acquisition in Inconsistent Generalized Decision Multi-scale Ordered Information Systems [J]. Computer Science, 2023, 50(6): 131-141.
[7] YANG Jie, KUANG Juncheng, WANG Guoyin, LIU Qun. Cost-sensitive Multigranulation Approximation of Neighborhood Rough Fuzzy Sets [J]. Computer Science, 2023, 50(5): 137-145.
[8] QIN Futong, YUAN Xuejun, ZHOU Chao, FAN Yongwen. Grey Evaluation Method of Network Security Grade Based on Comprehensive Weighting [J]. Computer Science, 2023, 50(11A): 230300144-6.
[9] CAO Dongtao, SHU Wenhao, QIAN Jin. Feature Selection Algorithm Based on Rough Set and Density Peak Clustering [J]. Computer Science, 2023, 50(10): 37-47.
[10] LI Teng, LI Deyu, ZHAI Yanhui, ZHANG Shaoxia. Optimal Granularity Selection and Attribute Reduction in Meso-granularity Space [J]. Computer Science, 2023, 50(10): 71-79.
[11] CHENG Fu-hao, XU Tai-hua, CHEN Jian-jun, SONG Jing-jing, YANG Xi-bei. Strongly Connected Components Mining Algorithm Based on k-step Search of Vertex Granule and Rough Set Theory [J]. Computer Science, 2022, 49(8): 97-107.
[12] XU Si-yu, QIN Ke-yun. Topological Properties of Fuzzy Rough Sets Based on Residuated Lattices [J]. Computer Science, 2022, 49(6A): 140-143.
[13] FANG Lian-hua, LIN Yu-mei, WU Wei-zhi. Optimal Scale Selection in Random Multi-scale Ordered Decision Systems [J]. Computer Science, 2022, 49(6): 172-179.
[14] CHEN Yu-si, AI Zhi-hua, ZHANG Qing-hua. Efficient Neighborhood Covering Model Based on Triangle Inequality Checkand Local Strategy [J]. Computer Science, 2022, 49(5): 152-158.
[15] SUN Lin, HUANG Miao-miao, XU Jiu-cheng. Weak Label Feature Selection Method Based on Neighborhood Rough Sets and Relief [J]. Computer Science, 2022, 49(4): 152-160.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!