Computer Science ›› 2024, Vol. 51 ›› Issue (12): 137-146.doi: 10.11896/jsjkx.231100135
• High Performance Computing • Previous Articles Next Articles
FU You1, DU Leiming1, GAO Xiran2, CHEN Li2
CLC Number:
[1]DURAN A,PEREZ J M,AYGUADE E,et al.Extending the OpenMP tasking model to allow dependent tasks[C]//OpenMP in a New Era of Parallelism:4th International Workshop,IWOMP 2008 West Lafayette,USA,May 12-14,2008 Procee-dings 4.Berlin,Germany:Springer,2008:111-122. [2]DURAN A,AYGUADE E,BADIA R M,et al.OmpSs:A proposal for programming heterogeneous multi-core architectures[J].Parallel Processing Letters,2011,21(2):173-193. [3]OpenMP ARB.OpenMP application program interface version 4.0[R].The OpenMP Forum,2013. [4]LEE J,SATO M.Implementation and performance evaluation of xcalableMP:A parallel programming language for distributed memory systems[C]//2010 39th International Conference on Parallel Processing Workshops.IEEE,2010:413-420. [5]CHEN L,TANG S,FU Y,et al.AceMesh:A structured data driven programming language for high performance computing[J].CCF Transactions on High Performance Computing,2020,2:309-322. [6]CHEN X,GAO Y,SHANG H,et al.Increasing the efficiency of massively parallel sparse matrix-matrix multiplication in first-principles calculation on the new-generation Sunway supercomputer[J].IEEE Transactions on Parallel and Distributed Systems,2022,33(12):4752-4766. [7]FU Y,WANG T,GUO Q,et al.Parallelization and optimization of Tend_Lin on Sunway TaihuLight system[J].Journal of Shandong University of Science and Technology(Natural Science),2019,38(2):90-99. [8]GUO J,GAO X R,CHEN L.et al.Parallelizing multigrid application using data-driven programming model[J].Compurter Science,2020,47(8):32-40. [9]YE Y X,FU Y,LIANG J G,et al.Composition optimizationmethod of AceMesh programming model on Sunway TaihuLight Platform[J].Journal of Shandong University of Science and Technology(Natural Science),2021,40(4):76-85. [10]TANG X,ZHANG C,ZHAI J,et al.A fast lock for explicit message passing architectures[J].IEEE Transactions on Computers,2020,70(10):1555-1568. [11]ÁLVAREZ D,SALA K,MARONAS M,et al.Advanced synchronization techniques for task-based runtime systems[C]//Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming.New York,NY,USA:ACM,2021:334-347. [12]PILLET V,LABARTA J,CORTES T,et al.Paraver:A tool to visualize and analyze parallel code[C]//Proceedings of WoTUG-18:Transputer and OCCAM Developments.Amsterdam:IOS Press,1995:17-31. [13]AUGONNET C,THIBAULT S,NAMYST R,et al.StarPU:A unified platform for task scheduling on heterogeneous multicore architectures[C]//Euro-Par 2009 Parallel Processing:15th International Euro-Par Conference,Delft,The Netherlands,August 25-28,2009.Berlin,Germany:Springer,2009:863-874. [14]CAO C,HERAULT T,BOSILCA G,et al.Design for a soft error resilient dynamic task-based runtime[C]//2015 IEEE International Parallel and Distributed Processing Symposium.IEEE,2015:765-774. [15]YARKHAN A,KURZAK J,DONGARRA J.Quark users’guide:Queueing and runtime forkernels:Technical Report:ICL-UT-11-02[R].University of Tennessee Innovative Computing Laboratory,2011. [16]TILLENIUS M.Scientific computing on multicore architectures[D].Sweden:Uppsala University,2014. [17]VANDIERENDONCK H,TZENAKIS G,NIKOLOPOULOS D S.Analysis of dependence tracking algorithms for task dataflow execution[J].ACM Transactions on Architecture and Code Optimization(TACO),2013,10(4):1-24. [18]BOSCH J,ÁLVAREZ C,JIMENEZ-GONZALEZ D,et al.Asynchronous runtime with distributed manager for task-based programming models[J].Parallel Computing,2020,97:102664. [19]CASTES C,AGULLO E,AUMAGE O,et al.Decentralized in-order execution of a sequential task-based code for shared-memory architectures[C]//2022 IEEE International Parallel and Distributed Processing Symposium Workshops(IPDPSW).IEEE,2022:552-561. [20]WANG Y,ZHANG Y,SU Y,et al.An adaptive and hierarchical task scheduling scheme for multi-core clusters[J].Parallel Computing,2014,40(10):611-627. [21]MUDDUKRISHNA A,JONSSON P A,BRORSSON M.Locality-aware task scheduling and data distribution for OpenMP programs on NUMA systems and manycore processors[J].Scienti-fic Programming,2016,2015:5. [22]OLIVIER S L,PORTERFIELD A K,WHEELER K B,et al.OpenMP task scheduling strategies for multicore NUMA systems[J].The International Journal of High Performance Computing Applications,2012,26(2):110-124. [23]NOOKALA P,DINDA P,HALE K C,et al.Enabling extremelyfine-grained parallelism via scalable concurrent queues on mo-dern many-core architectures[C]//2021 29th International Symposium on Modeling,Analysis,and Simulation of Computer and Telecommunication Systems(MASCOTS).IEEE,2021:1-8. |
[1] | LI Danyang, WU Liangji, LIU Hui, JIANG Jingqing. Deep Reinforcement Learning Based Thermal Awareness Energy Consumption OptimizationMethod for Data Centers [J]. Computer Science, 2024, 51(6A): 230500109-8. |
[2] | LIU Chenwei, SUN Jian, LEI Bingbing, XU Tao, WU Zhuiwei. Task Scheduling Strategy for Energy Consumption Optimization of Cloud Data Center Based on Improved Particle Swarm Algorithm [J]. Computer Science, 2023, 50(7): 246-253. |
[3] | HU Shengxi, SONG Rirong, CHEN Xing, CHEN Zheyi. Dependency-aware Task Scheduling in Cloud-Edge Collaborative Computing Based on Reinforcement Learning [J]. Computer Science, 2023, 50(11A): 220900076-8. |
[4] | TAN Shuang-jie, LIN Bao-jun, LIU Ying-chun, ZHAO Shuai. Load Scheduling Algorithm for Distributed On-board RTs System Based on Machine Learning [J]. Computer Science, 2022, 49(2): 336-341. |
[5] | SHEN Biao, SHEN Li-wei, LI Yi. Dynamic Task Scheduling Method for Space Crowdsourcing [J]. Computer Science, 2022, 49(2): 231-240. |
[6] | MA Xin-yu, JIANG Chun-mao, HUANG Chun-mei. Optimal Scheduling of Cloud Task Based on Three-way Clustering [J]. Computer Science, 2022, 49(11A): 211100139-7. |
[7] | LIU Wen-wen, XIONG Wei, HAN Chi. Communication Satellite Task Relaxation Scheduling Method Based on Improved Hyper-heuristic Algorithm [J]. Computer Science, 2022, 49(11A): 210900125-6. |
[8] | WANG Zheng, JIANG Chun-mao. Cloud Task Scheduling Algorithm Based on Three-way Decisions [J]. Computer Science, 2021, 48(6A): 420-426. |
[9] | CAI Ling-feng, WEI Xiang-lin, XING Chang-you, ZOU Xia, ZHANG Guo-min. Failure-resilient DAG Task Rescheduling in Edge Computing [J]. Computer Science, 2021, 48(10): 334-342. |
[10] | ZHANG Long-xin, ZHOU Li-qian, WEN Hong, XIAO Man-sheng, DENG Xiao-jun. Energy Efficient Scheduling Algorithm of Workflows with Cost Constraint in Heterogeneous Cloud Computing Systems [J]. Computer Science, 2020, 47(8): 112-118. |
[11] | SUN Min, CHEN Zhong-xiong, YE Qiao-nan. Workflow Scheduling Strategy Based on HEDSM Under Cloud Environment [J]. Computer Science, 2020, 47(6): 252-259. |
[12] | HU Jun-qin, ZHANG Jia-jun, HUANG Yin-hao, CHEN Xing, LIN Bing. Computation Offloading Scheduling Technology for DNN Applications in Edge Environment [J]. Computer Science, 2020, 47(10): 247-255. |
[13] | ZHANG Zhou, HUANG Guo-rui, JIN Pei-quan. Task Scheduling on Storm:Current Situations and Research Prospects [J]. Computer Science, 2019, 46(9): 28-35. |
[14] | ZENG Jin-jing, ZHANG Jian-shan, LIN Bing, ZHANG Wen-de. Cloudlet Workload Balancing Algorithm in Wireless Metropolitan Area Networks [J]. Computer Science, 2019, 46(8): 163-170. |
[15] | ZHANG Jian-shan, LIN Bing, LU Yu, XU Fu-rong. Cloudlet Placement and User Task Scheduling Based on Wireless Metropolitan Area Networks [J]. Computer Science, 2019, 46(6): 128-134. |
|