Computer Science ›› 2024, Vol. 51 ›› Issue (12): 199-208.doi: 10.11896/jsjkx.231000187
• Computer Graphics & Multimedia • Previous Articles Next Articles
SI Weina, YE Jun, JIANG Bin
CLC Number:
[1]HOU Y,ZHU W,WANG E.Hyperspectral mineral target detection based on density peak[J].Intelligent Automation and Soft Computing,2019,25(4):805-814. [2]FAUVEL M,TARABALKA Y,BENEDIKTSSON J A,et al.Advances in spectral-spatial classification of hyperspectral images[J].Proceedings of the IEEE,2023,101(3):652-675. [3]TIWARI K C,ARORA M K,SINGH D.An assessment of independent component analysis for detection of military targets from hyperspectral images[J].International Journal of Applied Earth Observation and Geoinformation,2011,13(5):730-740. [4]SUN L,ZHAN T,WU Z,et al.A Novel 3D Anisotropic Total Variation Regularized Low Rank Method for Hyperspectral Image Mixed Denoising[J].ISPRS International Journal of Geo-Information,2018,7(10):412-425. [5]DABOV K,FOI A,KATKOVNIK V,et al.Image Denoising bySparse 3-D Transform-Domain Collaborative Filtering[J].IEEE Transactions on Image Processing,2007,16(8):2080-2095. [6]AHARON M,ELAD M,BRUCKSTEIN A.K-SVD:An algo-rithm for designing overcomplete dictionaries for sparse representation[J].IEEE Transactions on Signal Processing,2006,54(11):4311-4322. [7]GU S,ZHANG L,ZUO W,et al.Weighted Nuclear Norm Minimization with Application to Image Denoising[J].IEEE Confe-rence on Computer Vision and Pattern Recognition,2014,32:2862-2869. [8]HE W,ZHANG H,ZHANG L,et al.Total-Variation-Regula-rized Low-Rank Matrix Factorization for Hyperspectral Image Restoration[J].IEEE Transactions on Geoscience and Remote Sensing,2016,54(1):178-188. [9]HE W,ZHANG H,SHEN H,et al.Hyperspectral Image De-noising Using Local Low-Rank Matrix Recovery and Global Spatial-Spectral Total Variation[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2018,11(3):713-729. [10]PENG J,WANG Y,ZHANG H,et al.Exact Decomposition of Joint Low Rankness and Local Smoothness Plus Sparse Matrices[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2023,45(5):5766-5781. [11]CAO X,FU X,XU C,et al.Deep Spatial-Spectral Global Reasoning Network for Hyperspectral Image Denoising[J].IEEE Transactions on Geoscience and Remote Sensing,2021,60:1-14. [12]ZHENG Y,HUANG T,ZHAO X,et al.Double-Factor Regula-rized Low-Rank Tensor Factorization for Mixed Noise Removal in Hyperspectral Image[J].IEEE Transactions on Geoscience and Remote Sensing,2020,58(12):8450-8464. [13]CHEN Y,HE W,YOKOYA N,et al.Hyperspectral image restoration using weighted group sparsity-regularized low-rank tensor decomposition[J].IEEE Transactions on Cybernetics,2020,50(8):3556-3570. [14]PENG J,WANG H,CAO X,et al.Fast Noise Removal in Hyperspectral Images via Representative Coefficient Total Variation[J].IEEE Transactions on Geoscience and Remote Sen-sing,2022,60:1-17. [15]CHANG Y,YAN L,FANG H,et al.Anisotropic Spectral-Spatial Total Variation Model for Multispectral Remote Sensing Image Destriping[J].IEEE Transactions on Image Processing,2015,24(6):1852-1866. [16]AGGARWAL H,MAJUMDAR A.Hyperspectral Image De-noising Using Spatio-Spectral Total Variation[J].IEEE Geo-science and Remote Sensing Letters,2016,13(3):442-446. [17]YANG J,ZHAO X,MEI J,et al.Total variation and high-order total variation adaptive model for restoring blurred images with Cauchy noise[J].Computers and Mathematics with Applications,2019,77(5):1255-1272. [18]ZHU J,LV H,HAO B,et al.Non-Convex High Order Total Variation With Overlapping Group Sparsity Denoising Model Under Cauchy Noise[J].IEEE Access,2021,9:49901-49911. [19]CAI J,HE W,ZHANG H.Anisotropic Spatial-Spectral TotalVariation Regularized Double Low-Rank Approximation for HSI Denoising and Destriping[J].IEEE Transactions on Geoscience and Remote Sensing,2022,60:1-19. [20]CHOKSI R,GENNIP Y.Deblurring of One Dimensional BarCodes via Total Variation Energy Minimization[J].SIAM Journal of Imaging Science,2009,3(4):735-764. [21]ZHANG H,CAI J,HE W,et al.Double low-rank matrix decomposition for hyperspectral image denoising and destriping[J].IEEE Transactions on Geoscience and Remote Sensing,2021,60:1-19. [22]PENG J,XIE Q,ZHAO Q,et al.Enhanced 3DTV Regularization and Its Applications on HSI Denoising and Compressed Sensing[J].IEEE Transactions on Image Processing,2020,29:7889-7903. [23]HUYNH-THU Q,GHANBARI M.Scope of validity of PSNR in image/video quality assessment[J].Electronics Letters,2008,44(13):800-801. [24]WANG Z,BOVIK A C,SHEIKH H R,et al.Image quality assessment:from error visibility to structural similarity[J].IEEE Transaction Image Processing,2004,13(4):600-612. [25]SUN L,JEON B,ZHENG Y,et al.A Novel Weighted Cross Total Variation Method for Hyperspectral Image Mixed Denoising[J].IEEE Access,2017,5:27172-27188. |
[1] | JIANG Bin, YE Jun, ZHANG Lihong, SI Weina. Hyperspectral Image Recovery Model Based on Bi-smoothing Function Rank Approximation andGroup Sparse [J]. Computer Science, 2024, 51(5): 151-161. |
[2] | ZHANG Lihong, YE Jun. Hyperspectral Image Denoising Based on Group Sparse and Constraint Smooth Rank Approximation [J]. Computer Science, 2023, 50(6): 209-215. |
[3] | XU Yi-fei, XIONG Shu-hua, SUN Wei-heng, HE Xiao-hai, CHEN Hong-gang. HEVC Post-processing Algorithm Based on Non-local Low-rank and Adaptive Quantization Constraint Prior [J]. Computer Science, 2021, 48(5): 155-162. |
[4] | WU Yong, LIU Yong-jian, TANG Tang, WANG Hong-lin, ZHENG Jian-cheng. Hyperspectral Image Denoising Based on Robust Low Rank Tensor Restoration [J]. Computer Science, 2021, 48(11A): 303-307. |
[5] | LI Jian-hong, WU Ya-rong and LV Ju-jian. Online Single Image Super-resolution Algorithm Based on Group Sparse Representation [J]. Computer Science, 2018, 45(4): 312-318. |
[6] | LIU Ya-nan, YANG Xiao-mei and CHEN Chao-nan. Super-resolution Image Reconstruction Based on Fractional Order Total Variation Regularization [J]. Computer Science, 2016, 43(5): 274-278. |
[7] | HUANG Hao-feng and XIAO Nan-feng. Super-resolution Reconstruction of Medical Images Based on Group Sparse Representation [J]. Computer Science, 2015, 42(Z6): 151-153. |
|