Computer Science ›› 2025, Vol. 52 ›› Issue (4): 262-270.doi: 10.11896/jsjkx.240100119
• Artificial Intelligence • Previous Articles Next Articles
PAN Jian1,2, WU Zhiwei1, LI Yanjun1
CLC Number:
[1]BUNESCU R,PASCA M.Using encyclopedic knowledge fornamed entity disambiguation[C]//11th Conference of the European Chapter of the Association for Computational Linguistics.2006:9-16. [2]DE C N,AZIZ W,TITOV I.Question answering by reasoningacross documents with graph convolutional networks[C]//2019 Annual Conference of the North American Chapter of the Association for Computational Linguistics.Association for Computational Linguistics,2019:2306-2317. [3]SHEN W,WANG J Y,HAN J W.Entity linking with a know-ledge base:issues,techniques,and solutions[J].IEEE Transactions on Knowledge and Data Engineering,2014,27(2):443-460. [4]CURRY A C,PAPAIOANNOU I,SUGLIA A,et al.Alana v2:Entertaining and informative open-domain social dialogue using ontologies and entity linking [C]//Alexa Prize Proceedings.2018. [5]LOGESWARAN L,CHANG M W,LEE K,et al.Zero-shot entity linking by reading entity descriptions[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.2019:3449-3460. [6]DEVLIN J,CHANG M W,LEE K,et al.Bert:pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of NAACL-HLT.2019. [7]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isall you need [J].arXiv:1706.03762,2017. [8]YANG Z L,DAI Z H,YANG Y M,et al.Xlnet:generalized autoregressive pretraining for language understanding [C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems.2019:5753-5763. [9]CLARK K,LUONG M T,LE Q V,et al.ELECTRA:pre-training text encoders as discriminators rather than generators[C]//International Conference on Learning Representations.2019. [10]LAN Z Z,CHEN M D,GOODMAN S,et al.ALBERT:a liteBERT for self-supervised learning of language representations[C]//International Conference on Learning Representations.2019. [11]LIU Y H,OTT M,GOYAL N,et al.Roberta:a robustly optimized bert pretraining approach [J].arXiv:1907.11692,2019. [12]RADFORD A,WU J,CHILD R,et al.Language models are unsupervised multitask learner-s [J].OpenAI blog,2019,1(8):9. [13]BROWN T,MANN B,RYDER N,et al.Language models are few-shot learners [J].Advances in Neural Information Proces-sing Systems,2020,33:1877-1901. [14]RAE J W,BORGEAUD S,CAI T,et al.Scaling language mo-dels:methods,analysis & insights from training gopher [J].ar-Xiv:2112.11446,2021. [15]WANG B.Mesh-Transformer-JAX:model-parallel implementation of transformer language model with JAX[EB/OL].https://github.com/kingoflolz/mesh-transformer-jax2021. [16]LEWIS M,LIU Y H,GOYAL N,et al.BART:denoising se-quence-to-sequence pre-training for natural language generation,translation,and comprehension[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.2020:7871-7880. [17]BAO H B,DONG L,WEI F R,et al.Unilmv2:pseudo-masked language models for unified language model pre-training[C]//International Conference on Machine Learning.PMLR,2020:642-652. [18]ZHU J H,XIA Y C,WU L J,et al.Incorporating BERT intoneural machine translation [C]//International Conference on Learning Representations.2019. [19]LI X Y,MENG Y X,SUN X F,et al.Is word segmentation necessary for deep learning of chinese representations?[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.2019:3242-3252. [20]SUN Y,WANG S H,LI Y K,et al.Ernie:enhanced representation through knowledge integration [J].arXiv:1904.09223,2019. [21]CUI Y M,CHE W X,LIU T,et al.Pre-training with wholeword masking for chinese bert[J].IEEE/ ACM Transactions on Audio,Speech,and Language Processing,2021,29:3504-3514. [22]SUN Z J,LI X Y,SUN X F,et al.ChineseBERT:chinese pretraining enhanced by glyph and pinyin information[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing(Volume 1:Long Papers).2021:2065-2075. [23]OUYANG L,WU J,JIANG X,et al.Training language models to follow instructions with human feedback [J].Advances in Neural Information Processing Systems,2022,35:27730-27744. [24]ABDULLAH M,MADAIN A,JARARWEH Y.ChatGPT:fundamentals,applications and social impacts[C]//2022 Ninth International Conference on Social Networks Analysis,Management and Security(SNAMS).IEEE,2022:1-8. [25]HE Z Y,LIU S J,LI M,et al.Learning entity representation forentity disambiguation[C]//Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics(Volume 2:Short Papers).2013:30-34. [26]CHEN Y,TAN Y S,WU Q B,et al.TGCEL:a chinese entity linking method based on topic relation graph[C]//2017 6th International Conference on Computer Science and Network Technology(ICCSN T).IEEE,2017:226-230. [27]OUYANG X Y,CHEN S D,ZHAO H,et al.A multi-crossmatching network for chinese named entity linking in short text[C]//Journal of Physics:Conference Series.IOP Publishing,2019. [28]HUA X Y,LI L,HUA L F,et al.XREF:entity linking for chinese news comments with supplementary article reference[C]//Automated Knowledge Base Construction.2020. [29]MURTY S,VERGA P,VILNIS L,et al.Hierarchical losses and new resources for fine-grained entity typing and linking[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics(Volume 1:Long Papers).2018:97-109. [30]RADFORD A,NARASIMHAN K,SALIMA-NS T,et al.Improving language understanding with unsupervised learning[J].Citado,2018,17:1-12. [31]YAMADA I,SHINDO H,TAKEDA H,et al.Joint learning of the embedding of words and entities for named entity disambiguation[C]//20th SIGNLL Conference on Computational Natural Language Learning,CoNLL 2016.Association for Computa-tional Linguistics(ACL),2016:250-259. [32]ROBERTSON S,ZARAGOZA H.The probabilistic relevanceframework:BM25 and beyond[J].Foundations and Trends? in Information Retrieval,2009,3(4):333-389. [33]WIATRAK M,ARVANITI E,BRAYNE A,et al.Proxy-based zero-shot entity linking by effective candidate retrieval[C]//Proceedings of the 13th International Workshop on Health Text Mining and Information Analysis(LOUHI).2022:87-99. [34]XU Z R,CHEN Y L,SHI S B,et al.Enhancing entity linking with contextualized entity embeddings [C]//CCF International Conference on Natural Language Processing and Chinese Computing.Cham:Springer Nature Switzerland,2022:228-239. [35]SEVGILI Ö,SHELMANOV A,ARKHIPOV M,et al.Neuralentity linking:a survey of models based on deep learning [J].Semantic Web,2022,13(3):527-570. [36]RISTOSKI P,LIN Z Z,ZHOU Q Z.KG-ZESHEL:knowledge graph-enhanced zero-shot entity linking[C]//Proceedings of the 11th on Knowledge Capture Conference.2021:49-56. [37]XU Z R,SHAN Z F,LI Y X,et al.Hansel:a chinese few-shot and zero-shot entity linking benchmark[C]//Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining.2023:832-840. [38]HUANG S J,WANG B B,QIN L B,et al.Improving few-shot and zero-shot entity linking with coarse-to-fine lexicon-based retriever[C]//CCF International Conference on Natural Language Processing and Chinese Computing.Cham:Springer Nature Switzerland,2023:245-256. [39]ZHOU H Y,SUN C J,LIN L,et al.ERNIE-AT-CEL:a chinese few-shot emerging entity linking model based on ERNIE and adversarial training[C]//CCF International Conference on Natural Language Processing and Chinese Computing.Cham:Springer Nature Switzerland,2023:48-56. [40]LI Y X,ZHAO Y,HU B T,et al.Glyphcrm:bidirectional encoder representation for chinese character with its glyph [J].arXiv:2107.00395,2021. [41]HUMEAU S,SHUSTER K,LACHAUX M A,et al.Poly-en-coders:architectures and pre-training strategies for fast and accurate multi-sentence scoring[C]//International Conference on Learning Representations.2019. [42]ZENG W X,ZHAO X,TANG J Y,et al.Cleek:a chinese long-text corpus for entity linking[C]//Proceedings of the 12th Language Resources and Evaluation Conference.2020:2026-2035. [43]GONG S,XIONG X,LI S,et al.Chinese entity linking with two-stage pre-training transformer encoders[C]//2022 International Conference on Machine Learning and Knowledge Engineering(MLKE).IEEE,2022:288-293. [44]CUI Y,CHE W,LIU T,et al.Pre-training with whole word masking for chinese bert[J].IEEE/ACM Transactions on Audio,Speech,and Language Processing,2021,29:3504-3514. |
[1] | TANG Ruiqi, XIAO Ting, CHI Ziqiu, WANG Zhe. Few-shot Image Classification Based on Pseudo-label Dependence Enhancement and NoiseInterferenceReduction [J]. Computer Science, 2024, 51(8): 152-159. |
[2] | JIANG Haoda, ZHAO Chunlei, CHEN Han, WANG Chundong. Construction Method of Domain Sentiment Lexicon Based on Improved TF-IDF and BERT [J]. Computer Science, 2024, 51(6A): 230800011-9. |
[3] | YANG Junzhe, SONG Ying, CHEN Yifei. Text Emotional Analysis Model Fusing Theme Characteristics [J]. Computer Science, 2024, 51(6A): 230600111-8. |
[4] | CHEN Bingting, ZOU Weiqin, CAI Biyu, LIU Wenjie. Bug Report Severity Prediction Based on Fine-tuned Embedding Model with Domain Knowledge [J]. Computer Science, 2024, 51(6A): 230400068-7. |
[5] | YANG Binxia, LUO Xudong, SUN Kaili. Recent Progress on Machine Translation Based on Pre-trained Language Models [J]. Computer Science, 2024, 51(6A): 230700112-8. |
[6] | LI Minzhe, YIN Jibin. TCM Named Entity Recognition Model Combining BERT Model and Lexical Enhancement [J]. Computer Science, 2024, 51(6A): 230900030-6. |
[7] | MENG Xiangfu, REN Quanying, YANG Dongshen, LI Keqian, YAO Keyu, ZHU Yan. Literature Classification of Individual Reports of Adverse Drug Reactions Based on BERT and CNN [J]. Computer Science, 2024, 51(6A): 230400049-6. |
[8] | CHEN Haoyang, ZHANG Lei. Very Short Texts Hierarchical Classification Combining Semantic Interpretation and DeBERTa [J]. Computer Science, 2024, 51(5): 250-257. |
[9] | YAN Yintong, YU Lu, WANG Taiyan, LI Yuwei, PAN Zulie. Study on Binary Code Similarity Detection Based on Jump-SBERT [J]. Computer Science, 2024, 51(5): 355-362. |
[10] | ZHENG Qijian, LIU Feng. BEML:A Blended Learning Analysis Paradigm for Hidden Space Representation of Commodities [J]. Computer Science, 2024, 51(11A): 240300150-6. |
[11] | LU Jiawei, LU Shida, LIU Sisi, WU Chengrong. Online Log Parsing Method Based on Bert and Adaptive Clustering [J]. Computer Science, 2024, 51(11): 65-72. |
[12] | LIU Yingying, YANG Qiuhui, YAO Bangguo, LIU Qiaoyun. Study on REST API Test Case Generation Method Based on Dependency Model [J]. Computer Science, 2023, 50(9): 101-107. |
[13] | ZHAO Jiangjiang, WANG Yang, XU Yingying, GAO Yang. Extractive Automatic Summarization Model Based on Knowledge Distillation [J]. Computer Science, 2023, 50(6A): 210300179-7. |
[14] | LUO Liang, CHENG Chunling, LIU Qian, GUI Yaocheng. Answer Selection Model Based on MLP and Semantic Matrix [J]. Computer Science, 2023, 50(5): 270-276. |
[15] | LI Binghui, FANG Huan, MEI Zhenhui. Interpretable Repair Method for Event Logs Based on BERT and Weak Behavioral Profiles [J]. Computer Science, 2023, 50(5): 38-51. |
|