Computer Science ›› 2025, Vol. 52 ›› Issue (6A): 240600098-9.doi: 10.11896/jsjkx.240600098
• Artificial Intelligence • Previous Articles Next Articles
LI Yonghui, YE Na, BAI Yu, ZHANG Guiping
CLC Number:
[1]JIN Y H.Research on a Hybrid Strategy Patent Machine Translation System [J].Computer Engineering and Applications,2012,48(4):29-32. [2]HU R F.A prepositional phrase automatic recognition strategy for Chinese English patent machine translation [J].Language and Writing Applications,2015(1):136-144. [3]LI H Z,ZHAO K,HU R F,etc.A Chinese English machine translation fusion system for the patent field [J].Intelligence Engineering,2017,3(3):105-115. [4]PARK C,JUNG Y J,KIM K,et al.KNU-HYUNDAI’s NMT system for Scientific Paper and Patent Tasks onWAT 2019[C]//Proceedings of the 6th Workshop on Asian Translation.2019:81-89. [5]WANG D,HTUN O.Goku’s Participation in WAT 2020[C]//Proceedings of the 7th Workshop on Asian Translation.2020:135-141. [6]GARCIA X,BANSAL Y,CHERRY C,et al.The unreasonable effectiveness of few-shot learning for machine translation[C]//Proceedings of the 40th International Conference on Machine Learning.PMLR,2023. [7]ZHU W H,LIU H Y,DONG Q X,et al.Multilingual machine translation with large language models:Empirical results and analysis[J]. arXiv:2304.04675,2023. [8]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isall you need[J].arXiv:1706.03762,2017. [9]MOHAMED S A,ELSAYED A A,HASSAN Y F,et al.Neural machine translation:past,present,and future[J].Neural Computing and Applications,2021,33:15919-15931. [10]GOTO I.Overview of the Patent Translation Task at the NTCIR-9 Workshop[J].Proceedings of NTCIR-9,2011,2011:559-578. [11]HOKAMP C,LIU Q.Lexically Constrained Decoding for Se-quence Generation Using Grid Beam Search[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics(Volume 1:Long Papers).2017:1535-1546. [12]POST M,VILAR D.Fast Lexically Constrained Decoding with Dynamic Beam Allocation for Neural Machine Translation[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,Volume 1(Long Papers).2018:1314-1324. [13]HU J E,KHAYRALLAH H,CULKIN R,et al.Improved Lexically Constrained Decoding for Translation and Monolingual Rewriting[C]//Proceedings of NAACL-HLT.2019:839-850. [14]ZHANG J,LUAN H,SUN M,et al.Neural machine translation with explicit phrase alignment[J].IEEE/ACM Transactions on Audio,Speech,and Language Processing,2021,29:1001-1010. [15]SONG K,ZHANG Y,YU H,et al.Code-Switching for Enhancing NMT with Pre-Specified Translation[C]//Proceedings of NAACL-HLT.2019:449-459. [16]DINU G,MATHUR P,FEDERICO M,et al.Training NeuralMachine Translation to Apply Terminology Constraints[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.2019:3063-3068. [17]MICHON E,CREGO J M,SENELLART J.Integrating domain terminology into neural machine translation[C]//Proceedings of the 28th International Conference on Computational Linguistics.2020:3925-3937. [18]YOU X D,YANG H X,CHEN H T,etc. Research on Machine Translation of New Energy Patents Integrating Terminological Information [J].Chinese Journal of Information Science,2021,35(12):76-83. [19]WANG S,LI P,TAN Z,et al.A Template-based Method for Constrained Neural Machine Translation[C]//Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing.2022:3665-3679. [20]WANG X,TU Z,XIONG D,et al.Translating Phrases in Neural Machine Translation[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing.2017:1421-1431. [21]XU H,VAN GENABITH J,XIONG D,et al.Learning Source Phrase Representations for Neural Machine Translation[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.2020:386-396. [22]CHEN G,CHEN Y,LI V O K.Lexically constrained neural ma-chine translation with explicit alignment guidance[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2021:12630-12638. [23]CHEN K,WANG R,UTIYAMA M,et al.Syntax-directed at-tention for neural machine translation[C]//Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence.2018:4792-4799. [24]BASTINGS J,TITOV I,AZIZ W,et al.Graph ConvolutionalEncoders for Syntax-aware Neural Machine Translation[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing.2017:1957-1967. [25]DEGUCHI H,TAMURA A,NINOMIYA T.Dependency-based self-attention for transformer NMT[C]//Proceedings of the International Conference on Recent Advances in Natural Language Processing(RANLP 2019).2019:239-246. [26]SHIV V L,QUIRK C.Novel positional encodings to enable tree-based transformers[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems.2019:12081-12091. [27]MA C,TAMURA A,UTIYAMA M,et al.Improving neuralmachine translation with neural syntactic distance[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,Volume 1(Long and Short Papers).2019:2032-2037. [28]WANG X,TU Z,WANG L,et al.Self-Attention with Structural Position Representations[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing(EMNLP-IJCNLP).2019:1403-1409. [29]XIE Y,WANG W,DU M,et al.Transformer with Syntactic Position Encoding for Machine Translation[C]//Proceedings of the International Conference on Recent Advances in Natural Language Processing(RANLP 2021).2021:1536-1544. [30]PAPINENI K,ROUKOS S,WARD T,et al.Bleu:a method for automatic evaluation of machine translation[C]//Proceedings of the 40th annual meeting of the Association for Computational Linguistics.2002:311-318. [31]MANNING C D,SURDEANU M,BAUER J,et al.The Stanford CoreNLP natural language processing toolkit[C]//Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics:System Demonstrations.2014:55-60. [32]CHURCH K W.Word2Vec[J].Natural Language Engineering,2017,23(1):155-162. [33]VOITA E,SENNRICH R,TITOV I.The Bottom-up Evolution of Representations in the Transformer:A Study with Machine Translation and Language Modeling Objectives[C]//2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing.Association for Computational Linguistics(ACL),2019:4387-4397. [34]PASCUAL D,EGRESSY B,MEISTER C,et al.A Plug-and-Play Method for Controlled Text Generation[C]//Findings of the Association for Computational Linguistics:EMNLP 2021.2021:3973-3997. [35]NEISHI M,YOSHINAGAN.On the relation between positioninformation and sentence length in neural machine translation[C]//Proceedings of the 23rd Conference on Computational Natural Language Learning(CoNLL).2019:328-338. [36]KOEHN P,HOANG H,BIRCH A,et al.Moses:Open sourcetoolkit for statistical machine translation[C]//Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics Companion Volume Proceedings of the Demo and Poster Sessions.Association for Computational Linguistics,2007:177-180. [37]TIEDEMANN J.Efficient Word Alignment with Markov Chain Monte Carlo[J].The Prague Bulletin of Mathematical Linguistics,106(1):125-146. [38]OTT M,EDUNOV S,BAEVSKI A,et al.FAIRSEQ:A Fast,Extensible Toolkit for Sequence Modeling[J].NAACL HLT 2019,2019:48. |
[1] | DONG Zhen-heng, REN Wei-ping, YOU Xin-dong, LYU Xue-qiang. Machine Translation Method Integrating New Energy Terminology Knowledge [J]. Computer Science, 2022, 49(6): 305-312. |
[2] | LIU Jun-peng, SU Jin-song, HUANG De-gen. Incorporating Language-specific Adapter into Multilingual Neural Machine Translation [J]. Computer Science, 2022, 49(1): 17-23. |
[3] | LIU Yan, XIONG De-yi. Construction Method of Parallel Corpus for Minority Language Machine Translation [J]. Computer Science, 2022, 49(1): 41-46. |
[4] | HUANG Ming, SUN Lin-fu, REN Chun-hua , WU Qi-shi. Improved KNN Time Series Analysis Method [J]. Computer Science, 2021, 48(6): 71-78. |
[5] | QIAO Bo-wen,LI Jun-hui. Neural Machine Translation Combining Source Semantic Roles [J]. Computer Science, 2020, 47(2): 163-168. |
[6] | WANG Qi, DUAN Xiang-yu. Neural Machine Translation Based on Attention Convolution [J]. Computer Science, 2018, 45(11): 226-230. |
[7] | LIU Xiao-yuan, YI Yang, YANG Lei and WANG Bin. Research of Document Image Super Resolution Algorithm Based on Directional Bilateral Total Variation Regularization [J]. Computer Science, 2017, 44(11): 301-304. |
[8] | LI Xiao-ning,GONG Jia-qiang and XING Hao-yang. Noise Reduction Algorithm for Texture Images Using Anisotropic Diffusion with Double-regularing Terms [J]. Computer Science, 2013, 40(6): 295-299. |
[9] | LI Jiang-hua,SHI Peng and HU Chang-jun. Ontology Concept Learning Method for Compound Terms [J]. Computer Science, 2013, 40(5): 168-172. |
|