Computer Science ›› 2025, Vol. 52 ›› Issue (6A): 240600036-6.doi: 10.11896/jsjkx.240600036
• Information Security • Previous Articles Next Articles
ZHANG Jing1,2, WANG Yuping3
CLC Number:
[1]CAO Z F.New directions of modern cryptography[M].NewYork:CRC Press,2012. [2]SIDELNIKOV V,CHEREPNEV M,YASCHENKO V.Systems of open distribution of keys on the basis of noncommutative semigroup[J].Russian Acad.Sci.Dokl.Math.,1993,48(2):566-567. [3]ANSHEL I,ANSHEL M,GOLDFELD D.An algebraic method for public key cryptography[J].Math.Res.Lett,Springer Verlag,1999,6:287-291. [4]KO K,SANG J L,CHEON J H,et al.New public-key crypto-system using braid groups[C]//Proceedings of the20th Annual International Cryptology Conference.Berlin:Springer,2000:166-183. [5]SHPILRAIN V,USHAKOV A.A new key exchange protocol based on the decomposition problem[J].Contemp. Math. Amer. Math. Soc,2005,172(2):161-167. [6]SHPILRAIN V,USHAKOV A.The conjugacy search problem in public key cryptography:Unnecessary and insufficient[J].Applicable Algebra in Engineering Communication & Computing,2006,17:285-289. [7]SAKALAUSKAS E,TVARIJONAS P,RAULYNAITIS A.Key agreement protocol(kap) using conjugacy and discrete logarithm problems in group representation level[J].Informatica,2006,18(1):115-124. [8]HABEEB M,KAHROBAEI D,KOUPPARIS C,et al.Publickey exchange using semidirect product of(semi)groups[C]//Proceedings of International Conference on Applied Cryptography and Network Security.Berlin:Springer,2013,2013:226-237. [9]SKURATOVSKII R,WILLIAMS A.Some approach to key exchange protocol based on non-commutative groups[J].International Journal of Mathematical Models and Methods in Applied Sciences,2020,14(2):5-7. [10]ALEKSEJUS M,ELIGIJUS S,KESTUTIS L.Key exchangeprotocol defined over a non-commuting group based on an NP-complete decisional problem[J].Symmetry,2020,12:1389. [11]MYASNIKOV A D,USHAKOV A.Quantum algorithm for the discrete logarithm problem for matrices over finite group rings[J].Group Complexity Cryptology,2014,6(1):31-36. [12]KAHROBAEI D,LAM H T,SHPILRAIN V.Pubilc key ex-change using extensions by endomorphisms and matrices over a Galois field[C]//Proceedings of the DIMACS Workshop on Multicore and Cryptography.USA:Hoboken NJ,2014:1-9. [13]SHPILRAIN V,ZAPATA G.Combinatorial group theory andpublic key cryptography[J].Applicable Algebra in Engineering,Communication and Computing,2006,17:291-302. [14]FENG K Q,LI S Z,ZHANG P.Introduction to modern algebra[M].Anhui:China University of Science and Technology Press,2020:6-21. [15]MYASNIKOV A,SHPILRAIN V,USHAKOV A.Non-Com-mutative Cryptography and Complexity of Group-Theoretic Problems[M]//American Mathematical Society,2011:15-18. [16]ELRIFAI E A,MORTON H R.Algorithms for positive braid[J].Q.J.Math,1994,45(4):479-497. [17]FRANCO N,JUAN G M.Computation of centralizers in braid groups and garside groups[J].Revista Matematica Iberoamericana,2007,19(2):367-384. [18]JUAN G M.On the structure of the centralizer of a braid[J].Annales Scientifiques De l′école Normale SupéRieure,2004,37(5):729-757. [19]GASHKOV S B,SERGEEV I S.Complexity of computation in finite fields[J].Journal of Mathematical Sciences,2013,191(5):661-685. [20]KREUZER M,MYASNIKOV A D,Ushakova.A linear algebra attack to group-ring-based key exchange protocols[C]//Proceedings of the International Conference on Applied Cryptography and Network Security.Switzerland:Springer,2014:37-43. [21]GENNARO R,MICCIANCIo D.Cryptanalysis of a pseudorandom generator based on braid groups[C]//Proceedings of theInternational Conference on the Theory and Applications of Cryptographic Techniques(Eurocrypt 2002).Berlin,Heidelberg:Springer,2002:1-13. [22]LONGRIG G J,USHAKOVA.A practical attack on a certainbraid group based shifted conjugacy authentication protocol[J].Group Complexity Cryptology,2009,1:275-286. [23]FINE B,HABEEB M,KAHROBAEI D,et al.Aspects of nonabelian group based cryptography:a survey and open problems[J].Journal of Algebra Number Theory & Applications,2011,21(1):1-40. [24]CAI D,WANG Y P,MIAO Y,et al.An orthogonal evolutionary algorithm with learning automata for multi-objective optimization[J].IEEE Transactions on Cybernetics,2016,46(12):3306-3319. [25]XUE X S,WANG Y P.Optimizing ontology alignments through a memetic algorithm using both match measure and unanimous improvement ratio[J].Artificial Intelligence,2015,223:65-81. [26]XUE X S,CHEN J F.Optimizing ontology alignment throughhybrid population-based incremental learning algorithm[J].Memetic Computing,2019,11(2):209-217. [27]XUE X S,WANGY P.Using memetic algorithm for instance coreference resolution[J].IEEE Transactions on Knowledge and Data Engineering,2016,28(2):580-591. |
[1] | QIN Yan-lin, WU Xiao-ping, HU Wei. Efficient Identity-based Authenticated Key Agreement Protocol with Multiple Private Key Generators [J]. Computer Science, 2020, 47(11): 68-72. |
[2] | WANG Yong-tao,FENG Wei-duan,LIU Xiao-nan,SONG Jing and GUO Zhen-zhou. Message Policy Attribute Based Key Agreement Protocol [J]. Computer Science, 2013, 40(9): 106-110. |
[3] | GUO Hua,ZHANG Fan,LI Zhou-jun,ZHOU Xiao-juan. Cryptanalysis and Improvement of a New Identity-based Key Exchange Protocol [J]. Computer Science, 2010, 37(10): 78-81. |
[4] | . [J]. Computer Science, 2009, 36(1): 60-64. |
[5] | TANG Xue-Ming, HONG Fan, CUI Cuo-Hua, WANG Xiao-Fei (College of Computer Science, Huazhong University of Science and Technology, Wuhan 430074). [J]. Computer Science, 2006, 33(8): 121-125. |
|