Computer Science ›› 2025, Vol. 52 ›› Issue (9): 62-70.doi: 10.11896/jsjkx.250100102
• Intelligent Medical Engineering • Previous Articles Next Articles
DENG Hong1, CHEN Yan2, YANG Hongbo3, ZHAO Feng2, JIANG Yongzhuo1, GUO Tao3, WANG Weilian1
CLC Number:
[1]GAO M Y,HE L,DU X,et al.20 years of atrial fibrillation epidemiology in China[J].Chinese Journal of Cardiovascular Di-sease,2024,52(2):220-226. [2]KORNEJ J,BÖRSCHEL C S,BENJAMIN E J,et al.Epidemiology of atrial fibrillation in the 21st century:novel methods and new insights[J].Circulation Research,2020,127(1):4-20. [3]HAGIWARA Y,FUJITA H,OH S L,et al.Computer-aided diagnosis of atrial fibrillation based on ECG Signals:A review[J].Information Sciences,2018,467:99-114. [4]TAE-SEOK K,HO-JOONG Y.Role of echocardiography in at-rial fibrillation[J].Journal of Cardiovascular Ultrasound,2011,19(2):51-61. [5]GIBSON C M,CIAGLO L N,SOUTHARD M C,et al.Diagnos-tic and prognostic value of ambulatory ECG(Holter) monitoring in patients with coronary heart disease:a review[J].Journal of Thrombosis and Thrombolysis,2007,23:135-145. [6]NABIH-ALI M,EL-DAHSHAN E L S A,YAHIA A S.A review of intelligent systems for heart sound signal analysis[J].Journal of Medical Engineering & Technology,2017,41(7):553-563. [7]YANG L,LI S,ZHANG Z,et al.Classification of phonocardiogram signals based on envelope optimization model and support vector machine[J].Journal of Mechanics in Medicine and Biology,2020,20(1):1-7. [8]ZHAO Q H,GENG S J,WANG B Y,et al.Deep Learning for Heart Sound Analysis:A Literature Review[J/OL].https://www.medrxiv.org/content/10.1101/2023.09.16.23295653v1.full-text. [9]RENNA F,OLIVEIRA J H,COIMBRA M T.Deep Convolutional Neural Networks for Heart Sound Segmentation[J].IEEE Journal of Biomedical and Health Informatics,2019,23(6):2435-2445. [10]AKRAM,MUHAMMAD USMAN,et al.Analysis of PCG signals using quality assessment and homomorphic filters for localization and classification of heart sounds[J] Computer Methods and Programs in Biomedicine,2018,164:143-157. [11]WANG Y L,SUN J,YANG H B,et al.Classification model of pulmonary hypertension heart sounds based on time-frequency fusion features[J].Computer Science,2024,51(S1):387-393. [12]DENG M,MENG T,CAO J,et al.Heart sound classificationbased on improved MFCC features and convolutional recurrent neural networks[J].Neural Networks,2020,130:22-32. [13]WHANG S E,TAE K H,ROH Y,et al.Responsible AI Challenges in End-to-end Machine Learning[J].IEEE Date Engineering Bulletin,2021,44:79-91. [14]CHEN Y,SUN Y,LV J,et al.End-to-end heart sound segmentation using deep convolutional recurrent network[J].Complex &Intelligent Systems,2021,7:2103-2117. [15] LI S,SUN J,YANG H,et al.Interpretable End-to-End heart sound classification[J].Measurement,2024:237. [16]NAHAR K,AL-HAZAIMEH O M,ABU-EIN A,et al.Phonocardiogram classification based on machine learning withmultiple sound features[J].Journal of Computer Science,2020,16(11):1648-1656. [17]LIU Z,WANG Y,VAIDYA S,et al.KAN:Kolmogorov-Arnold Networks[J].arXiv:2404.19756,2024. [18]DROKIN I.Kolmogorov-Arnold Convolutions:Design Principles and Empirical Studies[J].arXiv:2407.01092,2024. [19]OUYANG D,HE B,GHORBANI A,et al.Video-based AI for beat-to-beat assessment of cardiac function[J].Nature,2020,580(7802):252-256. [20]ZHAN J,WU X,FU X,et al.Non-contact assessment of cardiac physiology using FO-MVSS-based ballistocardiography:a promising approach for heart failure evaluation[J/OL].https://www.nature.com/articles/s41598-024-53464-8.pdf. [21]ASMARE M H,WOLDEHANNA F,JANSSENS L,et al.Rheumatic heart disease detection using deep learning from spectro-temporal representation of un-segmented heart sounds[C]//2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society(EMBC).IEEE,2020:168-171. [22]SINGH S A,MAJUMDER S.Short unsegmented PCG classification based on ensemble classifier[J].Turkish Journal of Electrical Engineering and Computer Sciences,2020,28(2):875-889. [23]LI F,TANG H,SHANG S,et al.Classification of Heart Sounds Using Convolutional Neural Network[J].Applied Sciences,2020,10(11):3956. [24]SKALICKY D,KOUCKYU,HADRABA D,et al.Detection of Respiratory Phases in a Breath Sound and Their Subsequent Utilization in a Diagnosis[J].Applied Sciences,2021,11(14):6353. [25]SATHESH K,KOWSALYA P,ARAVINDRAJ E,et al.Clearer HeartBeats:Enhancement of cardiac sounds using Adaptive Filtering and Wavelet Decomposition[C]//2024 10th International Conference on Communication and Signal Processing(ICCSP).IEEE,2024:947-952. [26]TANG H,WANG M,HU Y,et al.Automated Signal Quality Assessment for Heart Sound Signal by Novel Features and Evaluation in Open Public Datasets[J].BioMed Research International,2021:7565398. [27]BODNER A D,TEPSICH A S,SPOLSKI J N,et al.Convolutional Kolmogorov-Arnold Networks[J].arXiv:2406.13155,2024. [28]ZOU X,XU S,CHEN X,et al.Breaking the von Neumann bottleneck:architecture-level processing-in-memory technology[J].Science China Information Sciences,2021,64(6):1-10. [29]SRINIVAS A,LIN T Y,PARMAR N,et al.Bottleneck transformers for visual recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:16519-16529. [30]SINGH S,RUWASE O,AWAN A A,et al.A hybrid tensor-expert-data parallelism approach to optimize mixture-of-experts training[C]//Proceedings of the 37th International Conference on Supercomputing.2023:203-214. [31]LI B,SHEN Y,YANG J,et al.Sparse Mixture-of-Experts are Domain Generalizable Learners[C]//International Conference on Learning Representations(ICLR).2023. [32]LIU C F,SUN H,DONG H.A study of molecular amplification timing prediction combining Transformer and Kolmogorov Arnold network[J].Journal of Graphics,2024,45(6):1256-1265. [33]WU H,XIAO B,CODELLA N,et al.Cvt:Introducing convolutions to vision transformers[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:22-31. [34]YANG J,LI C,DAI X,et al.Focal modulation networks[J].Ad-vances in Neural Information Processing Systems,2022,35:4203-4217. [35]TIAN M D,PENG D T,ZHANG X.Research on sparse optimization with linear inequality constraints based on Huber loss and Capped L1 regularization[J].Theory of Mathematics,2022,12(11):12. [36]WANG Q,YANG H B,PAN J H,et al.Heart sound classification algorithm based on time-frequency combination feature and adaptive fuzzy neural network[J].Journal of Biomedical Engineering,2023,40(6):1152-1159. [37]WANG Y L.SUN J.YANG H B,et al.Heart sound classification based on improved mel frequency cepstrum coefficient and integrated decision network method[J]Journal of Blomedical Engineering,2022,39(6):1140-1148. [38]LOSHCHILOV I,HUTTER F.Decoupled Weight Decay Regularization[J].arXiv.1711.05101,2017. [39]KIM H,KO J G.Fast Monte-Carlo approximation of the atten-tion mechanism[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2022:7185-7193. |
[1] | ZOU Ling, ZHU Lei, DENG Yangjun, ZHANG Hongyan. Source Recording Device Verification Forensics of Digital Speech Based on End-to-End DeepLearning [J]. Computer Science, 2025, 52(6A): 240800028-7. |
[2] | GAN Run, WEI Xianglin, WANG Chao, WANG Bin, WANG Min, FAN Jianhua. Backdoor Attack Method in Autoencoder End-to-End Communication System [J]. Computer Science, 2024, 51(7): 413-421. |
[3] | SONG Hao, MAO Kuanmin, ZHU Zhou. Algorithm of Stereo Matching Based on GAANET [J]. Computer Science, 2024, 51(4): 229-235. |
[4] | YANG Lin, YANG Jian, CAI Haoran, LIU Cong. Vietnamese Speech Synthesis Based on Transfer Learning [J]. Computer Science, 2023, 50(8): 118-124. |
[5] | FENG Chengcheng, LIU Pai, JIANG Linying, MEI Xiaohan, GUO Guibing. Document-enhanced Question Answering over Knowledge-Bases [J]. Computer Science, 2023, 50(3): 266-275. |
[6] | CAO Jinjuan, QIAN Zhong, LI Peifeng. End-to-End Event Factuality Identification with Joint Model [J]. Computer Science, 2023, 50(2): 292-299. |
[7] | CHEN Yunfang, LU Yangyang, ZHOU Xin, ZHANG Wei. Multi-object Tracking Based on Cross-correlation Attention and Chained Frames [J]. Computer Science, 2023, 50(1): 131-137. |
[8] | LI Sun, CAO Feng. Analysis and Trend Research of End-to-End Framework Model of Intelligent Speech Technology [J]. Computer Science, 2022, 49(6A): 331-336. |
[9] | ZHAO Ren-xing, XU Pin-jie, LIU Yao. ECG-based Atrial Fibrillation Detection Based on Deep Convolutional Residual Neural Network [J]. Computer Science, 2022, 49(5): 186-193. |
[10] | YANG Run-yan, CHENG Gao-feng, LIU Jian. Study on Keyword Search Framework Based on End-to-End Automatic Speech Recognition [J]. Computer Science, 2022, 49(1): 53-58. |
[11] | ZHANG Peng, WANG Xin-qing, XIAO Yi, DUAN Bao-guo, XU Hong-hui. Real-time Binocular Depth Estimation Algorithm Based on Semantic Edge Drive [J]. Computer Science, 2021, 48(9): 216-222. |
[12] | LIU Dong, WANG Ye-fei, LIN Jian-ping, MA Hai-chuan, YANG Run-yu. Advances in End-to-End Optimized Image Compression Technologies [J]. Computer Science, 2021, 48(3): 1-8. |
[13] | JIANG Qi, SU Wei, XIE Ying, ZHOUHONG An-ping, ZHANG Jiu-wen, CAI Chuan. End-to-End Chinese-Braille Automatic Conversion Based on Transformer [J]. Computer Science, 2021, 48(11A): 136-141. |
[14] | HUA Ming, LI Dong-dong, WANG Zhe, GAO Da-qi. End-to-End Speaker Recognition Based on Frame-level Features [J]. Computer Science, 2020, 47(10): 169-173. |
[15] | HUA Zhen, ZHANG Hai-cheng, LI Jin-jiang. End-to-end Image Super Resolution Based on Residuals [J]. Computer Science, 2019, 46(6): 246-255. |
|