Computer Science ›› 2025, Vol. 52 ›› Issue (10): 357-365.doi: 10.11896/jsjkx.240900142
• Information Security • Previous Articles Next Articles
HE Hao, ZHANG Hui
CLC Number:
[1]BACE R G,MELL P.Intrusion detection systems:Technical Report[R].National Institute of Standards and Technology,2001. [2]KHRAISAT A,GONDAL I,VAMPLEW P,et al.Survey of intrusion detection systems:techniques,datasets and challenges [J].Cybersecurity,2019,2(1):1-22. [3]GARCIA-TEODORO P,DIAZ-VERDEJO J,MACIÁ-FERNÁ-NDEZ G,et al.Anomaly-based network intrusion detection:Techniques,systems and challenges [J].Computers & Security,2009,28(1/2):18-28. [4]SETTLES B.Active learning literature survey:Technical Report[R].University of Wisconsin-Madison Department of Computer Sciences,2009. [5]MOHAMMADPOUR L,LING T C,LIEW C S,et al.A survey of CNN-based network intrusion detection [J].Applied Sciences,2022,12(16):8162. [6]SHEIKHAN M,JADIDI Z,FARROKHI A.Intrusion detection using reduced-size RNN based on feature grouping [J].Neural Computing and Applications,2012,21:1185-1190. [7]FEDERATION C C.CCF-BDCI-2022 Dateset [EB/OL].(2022-08-26)[2024-09-20].https://www.datafountain.cn/competitions/596/datasets. [8]SIDDHARTHA M.Malicious URLs dataset [EB/OL].[2024-09-20].https://www.kaggle.com/datasets/sid321axn/malicious-urls-dataset. [9]KIM D S,PARK J S.Network-based intrusion detection with support vector machines[C]//Information Networking:International Conference.Cheju Island,Korea:Springer,2003:747-756. [10]BAHROLOLUM M,KHALEGHI M.Anomaly intrusion detection system using Gaussian mixture model[C]//Third International Conference on Convergence and Hybrid Information Technology.IEEE,2008:1162-1167. [11]ROESCH M.Snort:Lightweight intrusion detection for net-works[C]//Lisa.1999:229-238. [12]VINAYAKUMAR R,SOMAN K,POORNACHANDRAN P.Applying convolutional neural network for network intrusion detection[C]//International Conference on Advances in Computing,Communications and Informatics(ICACCI 2017).IEEE,2017:1222-1228. [13]YIN C,ZHU Y,FEI J,et al.A deep learning approach for intrusion detection using recurrent neural networks [J].Ieee Access,2017,5:21954-21961. [14]IMRANA Y,XIANG Y,ALI L,et al.A bidirectional LSTMdeep learning approach for intrusion detection [J].Expert Systems with Applications,2021,185:115524. [15]WANG J,WANG H L,HUANG B W,et al.Intrusion detection for industrial internet of things based on federated learning and self-attention[J].Journal of Jilin University(Engineering and Technology Edition),2023,53(11):3229-3237. [16]FARAHNAKIAN F,HEIKKONEN J.A deep auto-encoderbased approach for intrusion detection system[C]//20th International Conference on Advanced Communication Technology(ICACT 2018).IEEE,2018:178-183. [17]ALMGREN M,JONSSON E.Using active learning in intrusion detection[C]//Proceedings 17th IEEE Computer Security Foundations Workshop,2004.IEEE,2004:88-98. [18]GÖRNITZ N,KLOFT M,RIECK K,et al.Active learning for network intrusion detection[C]//Proceedings of the 2nd ACM Workshop on Security and Artificial Intelligence.2009:47-54. [19]LEWIS D D,CATLETT J.Heterogeneous uncertainty sampling for supervised learning [M]//Machine Learning Proceedings 1994.Elsevier,1994:148-156. [20]GRAFSTRÖM A,SCHELIN L.How to select representativesamples [J].Scandinavian Journal of Statistics,2014,41(2):277-290. [21]LI Y,GUO L.An active learning based TCM-KNN algorithm for supervised network intrusion detection [J].Computers & Security,2007,26(7/8):459-467. [22]CAI Y,CHEN W R.Anomaly detection algorithm based on improved active learning [J].Computer Engineering and Design,2022:43(11):3057-3062. [23]ZHANG Y,NIU J,HE G,et al.Network intrusion detection based on active semi-supervised learning[C]//51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops(DSNW).IEEE,2021:129-135. [24]AHMED M,SERAJ R,ISLAM S M S.The k-means algorithm:A comprehensive survey and performance evaluation [J].Electronics,2020,9(8):1295. [25]COATES A,NG A,LEE H.An analysis of single-layer networks in unsupervised feature learning[C]//Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics.JMLR Workshop and Conference Proceedings,2011:215-223. [26]MUNJAL P,HAYAT N,HAYAT M,et al.Towards robust and reproducible active learning using neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:223-232. [27]LIU P,WANG L,RANJAN R,et al.A survey on active deep learning:from model driven to data driven [J].ACM Computing Surveys(CSUR),2022,54(10s):1-34. [28]MILLER B,LINDER F,MEBANE JR W R.Active learning approaches for labeling text:review and assessment of the performance of active learning approaches [J].Political Analysis,2020,28(4):532-551. [29]BHUYAN R,BORAH S.A survey of some density based clustering techniques [J].arXiv:2306,09256,2023. [30]SOUZA V,ROSSI R G,BATISTA G E,et al.Unsupervised active learning techniques for labeling training sets:an experimental evaluation on sequential data [J].Intelligent Data Analysis,2017,21(5):1061-1095. [31]VU V V,LABROCHE N,BOUCHON-MEUNIER B.Activelearning for semi-supervised k-means clustering[C]//2010 22nd IEEE International Conference on Tools with Artificial Intelligence.IEEE,2010:12-15. [32]SENER O,SAVARESE S.Active learning for convolutionalneural networks:A core-set approach [J].arXiv:1708,00489,2017. [33]HE K M,ZHANG X Y,REN S Q,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [34]FONSECA J,VIEIRA M,MADEIRA H.The web attacker perspective-a field study[C]//2010 IEEE 21st International Symposium on Software Reliability Engineering.IEEE,2010:299-308. [35]HALFOND W G,VIEGAS J,ORSO A.A Classification of SQL Injection Attacks and Countermeasures[C]//ISSSE.2006. [36]RODRÍGUEZ G E,TORRES J G,FLORES P,et al.Cross-site scripting(XSS) attacks and mitigation:A survey [J].Computer Networks,2020,166:106960. [37]JOSEPH V R.Optimal ratio for data splitting [J].StatisticalAnalysis and Data Mining:The ASA Data Science Journal,2022,15(4):531-538. [38]CITOVSKY G,DESALVO G,GENTILE C,et al.Batch active learning at scale [J].Advances in Neural Information Processing Systems,2021,34:11933-11944. |
[1] | HU Yongqing, YANG Han, LIU Ziyuan, QING Guangjun, DAI Qinglong. ACCF:Time Prediction Mechanism-driven Top-k Flow Measurement [J]. Computer Science, 2025, 52(10): 98-105. |
[2] | DUAN Pengsong, ZHANG Yihang, FANG Tao, CAO Yangjie, WANG Chao. WiLCount:A Lightweight Crowd Counting Model for Wireless Perception Scenarios [J]. Computer Science, 2025, 52(10): 317-327. |
[3] | WANG Pengrui, HU Yuxiang, CUI Pengshuai, DONG Yongji, XIA Jiqiang. SRv6 Functional Conformance Verification Mechanism Based on the Programmable Data Plane [J]. Computer Science, 2025, 52(10): 328-335. |
[4] | XU Jia, LIU Jingyi, XU Lijie, LIU Linfeng. Wireless Charging Scheduling with Minimized Maximum Return-to-Work Time for Heterogeneous Mobile Rechargeable Devices [J]. Computer Science, 2025, 52(10): 336-347. |
[5] | WU Moxun, PENG Zeshun, YU Minghe, LI Xiaohua, DONG Xiaomei, NIE Tiezheng, YU Ge. Approach for Lightweight Verifiable Data Management Based on Blockchains [J]. Computer Science, 2025, 52(10): 348-356. |
[6] | ZHU Ziyi, ZHANG Jianhui, ZENG Junjieand ZHANG Hongyuan. Security-aware Service Function Chain Deployment Method Based on Deep ReinforcementLearning [J]. Computer Science, 2025, 52(10): 404-411. |
[7] | WU Jiagao, YI Jing, ZHOU Zehui, LIU Linfeng. Personalized Federated Learning Framework for Long-tailed Heterogeneous Data [J]. Computer Science, 2025, 52(9): 232-240. |
[8] | SHEN Tao, ZHANG Xiuzai, XU Dai. Improved RT-DETR Algorithm for Small Object Detection in Remote Sensing Images [J]. Computer Science, 2025, 52(8): 214-221. |
[9] | LONG Tie, XIAO Fu, FAN Weibei, HE Xin, WANG Junchang. Cubic+:Enhanced Cubic Congestion Control for Cross-datacenter Networks [J]. Computer Science, 2025, 52(8): 335-342. |
[10] | YE Miao, WANG Jue, JIANG Qiuxiang, WANG Yong. SDN-based Integrated Communication and Storage Edge In-network Storage Node Selection Method [J]. Computer Science, 2025, 52(8): 343-353. |
[11] | FAN Xinggang, JIANG Xinyang, GU Wenting, XU Juntao, YANG Youdong, LI Qiang. Effective Task Offloading Strategy Based on Heterogeneous Nodes [J]. Computer Science, 2025, 52(8): 354-362. |
[12] | ZHAO Jihong, MA Jian, LI Qianwen, NING Lijuan. Service Function Chain Deployment Method Based on VNF Divided Backup Mechanisms [J]. Computer Science, 2025, 52(7): 287-294. |
[13] | LIU Wenfei, LIU Jiafei, WANG Qi, WU Jingli, LI Gaoshi. Component Reliability Analysis of Interconnected Networks Based on Star Graph [J]. Computer Science, 2025, 52(7): 295-306. |
[14] | CHEN Shangyu, HU Hongchao, ZHANG Shuai, ZHOU Dacheng, YANG Xiaohan. Tor Multipath Selection Based on Threaten Awareness [J]. Computer Science, 2025, 52(7): 363-371. |
[15] | ZHOU Lei, SHI Huaifeng, YANG Kai, WANG Rui, LIU Chaofan. Intelligent Prediction of Network Traffic Based on Large Language Model [J]. Computer Science, 2025, 52(6A): 241100058-7. |
|