Computer Science ›› 2025, Vol. 52 ›› Issue (11A): 241000116-9.doi: 10.11896/jsjkx.241000116
• Big Data & Data Science • Previous Articles Next Articles
LANG Aoqi1,2, HUANG Weijie1,2, YU Zhiyong1,2,3, HUANG Fangwan1,2,3
CLC Number:
| [1]FENG T,SUN Y,SHI Y,et al.Air pollution control policies and impacts:A review[J].Renewable and Sustainable Energy Reviews,2024,191:114071. [2]SOKHI R S,MOUSSIOPOULOS N,BAKLANOV A,et al.Advances in air quality research-current and emerging challenges[J].Atmospheric Chemistry and Physics Discussions,2021,2021:1-89. [3]HU J,LIANG Y,FAN Z,et al.Graph Neural Processes for Spa-tio-Temporal Extrapolation[C]//Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.2023:752-763. [4]WU Y,ZHUANG D,LABBE A,et al.Inductive graph neural networks for spatiotemporal kriging[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2021:4478-4485. [5]WU Z,PAN S,LONG G,et al.Graph wavenet for deep spatial-temporal graph modeling[J].arXiv:1906.00121,2019. [6]ROTH A,LIEBIG T.Forecasting unobserved node states with spatio-temporal graph neural networks[C]//2022 IEEE International Conference on Data Mining Workshops(ICDMW).IEEE,2022:740-747. [7]TIAN Y,JIANG Y,LIU Q,et al.Temporal and spatial trends inair quality in Beijing[J].Landscape and urban planning,2019,185:35-43. [8]LIU T,ZHU Y,YANG Y,et al.Incentive design for air pollution monitoring based on compressive crowdsensing[C]//2016 IEEE Global Communications Conference(GLOBECOM).IEEE,2016:1-6. [9]PAN Z,YU H,MIAO C,et al.Crowdsensing air quality withcamera-enabled mobile devices[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2017:4728-4733. [10]XU Y,ZHU Y,QIN Z.Urban noise mapping with a crowd sen-sing system[J].Wireless networks,2019,25:2351-2364. [11]LIU T,ZHU Y,YANG Y,et al.ALC2:When active learning meets compressive crowdsensing for urban air pollution monitoring[J].IEEE Internet of Things Journal,2019,6(6):9427-9438. [12]ZHU K,ZHANG A,NIYATO D.Cost-effective active sparseurban sensing:Adversarial autoencoder approach[J].IEEE Internet of Things Journal,2021,8(15):12064-12078. [13]HUANG W J,GUO X W,YU Z Y,et al.Active Sampling of Air Quality Based on Compressed Sensing Adaptive Measurement Matrix [J].Computer science,2024,51(7):116-123. [14]ZHENG Y,LIU F,HSIEHH P.U-air:When urban air quality inference meets big data[C]//Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2013:1436-1444. [15]YI X,ZHENG Y,ZHANG J,et al.ST-MVL:Filling missingvalues in geo-sensory time series data[C]//Proceedings of the 25th International Joint Conference on Artificial Intelligence.2016. [16]XIE K,LI X,WANG X,et al.Active sparse mobile crowd sensing based on matrix completion[C]//Proceedings of the 2019 Inernational Conference on Management of Data.2019:195-210. [17]WANG L,ZHANG D,YANG D,et al.SPACE-TA:Cost-effective task allocation exploiting intradata and interdata correlations in sparse crowdsensing[J].ACM Transactions on Intelligent Systems and Technology(TIST),2017,9(2):1-28. [18]WANG L,ZHANG D,PATHAK A,et al.CCS-TA:Quality-guaranteed online task allocation in compressive crowdsensing[C]//Proceedings of the 2015 ACM International Joint Confe-rence on Pervasive and Ubiquitous Computing.2015:683-694. [19]WANG L,ZHANG D,YANG D,et al.Differential location privacy for sparse mobile crowdsensing[C]//2016 IEEE 16th International Conference on Data Mining(ICDM).IEEE,2016:1257-1262. [20]LIU W,WANG L,WANG E,et al.Reinforcement learning-based cell selection in sparse mobile crowdsensing[J].Computer Networks,2019,161:102-114. [21]LIU W,YANG Y,WANG E,et al.Multi-dimensional urbansensing in sparse mobile crowdsensing[J].IEEE Access,2019,7:82066-82079. [22]WANG L,LIU W,ZHANG D,et al.Cell selection with deep reinforcement learning in sparse mobile crowdsensing[C]//2018 IEEE 38th International Conference on Distributed Computing Systems(ICDCS).IEEE,2018:1543-1546. [23]LIU W,YANG Y,WANG E,et al.User recruitment for enhancing data inference accuracy in sparse mobile crowdsensing[J].IEEE Internet of Things Journal,2019,7(3):1802-1814. [24]DING Y,RAO B D.Joint dictionary learning and recovery algorithms in a jointly sparse framework[C]//2015 49th Asilomar Conference on Signals,Systems and Computers.IEEE,2015:1482-1486. [26]BENESTY J,BENESTY J.Speech Enhancement Via Correlation Coefficients[J].Fundamentals of Speech Enhancement,2018:45-64. [27]SCHOBER P,BOER C,SCHWARTEL A.Correlation coeffi-cients:appropriate use and interpretation[J].Anesthesia & Analgesia,2018,126(5):1763-1768. [28]ZHENG Y,YI X,LI M,et al.Forecasting fine-grained air quality based on big data[C]//Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2015:2267-2276. |
| [1] | WANG Wei, ZHAO Yunlong, PENG Xiaoyu, PAN Xiaodong. TSK Fuzzy System Enhanced by TSVR with Cooperative Parameter Optimization [J]. Computer Science, 2025, 52(7): 75-81. |
| [2] | HUANG Ao, LI Min, ZENG Xiangguang, PAN Yunwei, ZHANG Jiaheng, PENG Bei. Adaptive Hybrid Genetic Algorithm Based on PPO for Solving Traveling Salesman Problem [J]. Computer Science, 2025, 52(6A): 240600096-6. |
| [3] | WANG Sitong, LIN Rongheng. Improved Genetic Algorithm with Tabu Search for Asynchronous Hybrid Flow Shop Scheduling [J]. Computer Science, 2025, 52(4): 271-279. |
| [4] | YU Ping, YAN Hui, BAO Jie, GENG Xiaozhong. MEC Network Task Offloading and Migration Strategy Based on Optimization Model [J]. Computer Science, 2025, 52(11A): 241200215-6. |
| [5] | LI Xiaogeng, HAN Xiao, XIAO Haiyi. Cooperative Defense Method for Network Space Object of Power Monitoring System [J]. Computer Science, 2025, 52(11A): 241200158-7. |
| [6] | HUANG Weijie, GUO Xianwei, YU Zhiyong, HUANG Fangwan. Active Sampling of Air Quality Based on Compressed Sensing Adaptive Measurement Matrix [J]. Computer Science, 2024, 51(7): 116-123. |
| [7] | XU Haitao, CHENG Haiyan, TONG Mingwen. Study on Genetic Algorithm of Course Scheduling Based on Deep Reinforcement Learning [J]. Computer Science, 2024, 51(6A): 230600062-8. |
| [8] | HUANG Fei, LI Yongfu, GAO Yang, XIA Lei, LIAO Qinglong, DAI Jian, XIANG Hong. Scheduling Optimization Method for Household Electricity Consumption Based on Improved Genetic Algorithm [J]. Computer Science, 2024, 51(6A): 230600096-6. |
| [9] | LI Zhibo, LI Qingbao, LAN Mingjing. Method of Generating Test Data by Genetic Algorithm Based on ART Optimal Selection Strategy [J]. Computer Science, 2024, 51(6): 95-103. |
| [10] | WANG Baocai, WU Guowei. Feature-weighted Counterfactual Explanation Method:A Case Study in Credit Risk Control Scenarios [J]. Computer Science, 2024, 51(12): 259-268. |
| [11] | JIANG Yibo, ZHOU Zebao, LI Qiang, ZHOU Ke. Optimization of Low-carbon Oriented Logistics Center Distribution Based on Genetic Algorithm [J]. Computer Science, 2024, 51(11A): 231200035-6. |
| [12] | HAN Huijian, LIU Kexin, LIN Xue. Air Quality Fuzzy Cognitive Map Forecasting Based on Niche Genetic Algorithm [J]. Computer Science, 2024, 51(11A): 240300120-6. |
| [13] | ZHONG Linhui, YANG Chaoyi, XIA Zihao, HUANG Qixuan, QU Qiaoqiao, LI Fangyun, SUN Wenbin. Style-oriented Software Architecture Evolution Path Generation Method [J]. Computer Science, 2024, 51(11A): 240100130-9. |
| [14] | LIU Xuanyu, ZHANG Shuai, HUO Shumin, SHANG Ke. Microservice Moving Target Defense Strategy Based on Adaptive Genetic Algorithm [J]. Computer Science, 2023, 50(9): 82-89. |
| [15] | LIU Ziwen, YU Lijuan, SU Yixing, ZHAO Yao, SHI Zhu. Test Case Generation Based on Web Application Front-end Behavior Model [J]. Computer Science, 2023, 50(7): 18-26. |
|
||