Computer Science ›› 2025, Vol. 52 ›› Issue (12): 321-330.doi: 10.11896/jsjkx.250300056
• Information Security • Previous Articles Next Articles
YANG Yizhe, LU Tianliang, PENG Shufan, LI Xiaolin
CLC Number:
| [1]SonicWall.2024 Mid-Year Cyber Threat Report[EB/OL].(2024-08-30) [2024-12-01].https://www.sonicwall.com/resources/white-papers/mid-year-2024-sonicwall-cyber-threat-report. [2]AMER E,ZELINKA I.A dynamic Windows malware detection and prediction method based on contextual understanding of API call sequence[J].Computers & Security,2020,92:101760. [3]KAKISIM A G,GULMEZ S,SOGUKPINAR I.Sequential opcode embedding-based malware detection method[J].Computers &Electrical Engineering,2022,98:107703. [4]YAN J,YAN G,JIN D.Classifying malware represented as control flow graphs using deep graph convolutional neural network[C]//2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks(DSN).IEEE,2019:52-63. [5]GOPINATH M,SETHURAMAN S C.A comprehensive survey on deeplearning based malware detection techniques[J].Computer Science Review,2023,47:100529. [6]DAMODARAN A,TROIA F D,VISAGGIO C A,et al.A comparison of static,dynamic,and hybrid analysis for malware detection[J].Journal of Computer Virology and Hacking Techniques,2017,13:1-12. [7]GAO Q Q,SHI Z B,QIN Y M,et al.Interpretable malicious code detection method based on API sequence[J].Computer Engineering and Design,2023,44(6):1642-1648. [8]CUI L,CUI J,JI Y,et al.Api2vec:Learning representations of api sequences for malware detection[C]//Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis.2023:261-273. [9]WANG P,TANG Z,WANG J.A novel few-shot malware classification approach for unknown family recognition with multi-prototype modeling[J].Computers & Security,2021,106:102273. [10]MANIRIHO P,MAHMOOD A N,CHOWDHURY M J M.API-MalDetect:Automated malware detection framework for windows based on API calls and deep learning techniques[J].Journal of Network and Computer Applications,2023,218:103704. [11]AHMED F,HAMEED H,SHAFIQ M Z,et al.Using spatio-temporal information in API calls with machine learning algorithms for malware detection[C]//Proceedings of the 2nd ACM Workshop on Security and Artificial Intelligence.2009:55-62. [12]CHEN X,HAO Z,LI L,et al.Cruparamer:Learning on parameter-augmented api sequences for malware detection[J].IEEE Transactions on Information Forensics and Security,2022,17:788-803. [13]LI C,CHENG Z,ZHU H,et al.DMalNet:Dynamic malwareanalysis based on API feature engineering and graph learning[J].Computers & Security,2022,122:102872. [14]ZHANG Z,QI P,WANG W.Dynamic malware analysis withfeature engineering and feature learning[C]//Proceedings of the AAAI Cconference on Artificial Intelligence.2020:1210-1217. [15]GUERRA-MANZANARES A,LUCKNER M,BAHSI H.Concept drift and cross-device behavior:Challenges and implications for effective android malware detection[J].Computers & Secu-rity,2022,120:102757. [16]CAI Z,DING X,SHEN Q,et al.Refconv:Re-parameterized refocusing convolution for powerful convnets[J].arXiv:2310.10563,2023. [17]TRINIUS P,WILLEMS C,HOLZ T,et al.A malware instruction set for behavior-based analysis[C]//Sicherheit 2010.Sicherheit,Schutz und Zuverlässigkeit.Gesellschaft für Informatik eV,2010:205-215. [18]QIAO Y,YANG Y,HE J,et al.CBM:free,automatic malware analysis framework using APIcall sequences[C]//Knowledge Engineering and Management:Proceedings of the Seventh International Conference on Intelligent Systems and Knowledge Engineering(ISKE 2012).Springer,2014:225-236. [19]YESIR S,SOĞUKPINAR I·.Malware detection and classification using fasttext and bert[C]//2021 9th International Symposium on Digital Forensics and Security(ISDFS).IEEE,2021:1-6. [20]WONG G W,HUANG Y T,GUO Y R,et al.Attention-based API locating for malware techniques[J].IEEE Transactions on Information Forensics and Security,2023,19:1199-1212. [21]CUI L,YIN J,CUI J,et al.API2Vec++:Boosting API Sequence Representation for Malware Detection and Classification[J].IEEE Transactions on Software Engineering,2024,50(8):2142-2162. [22]ZHOU B,HUANG H,XIA J,et al.A novel malware detection method based on API embedding and API parameters[J].The Journal of Supercomputing,2024,80(2):2748-2766. [23]CHEN T,ZENG H,LYU M,et al.CTIMD:Cyber threat intelligence enhanced malware detection using API call sequences with parameters[J].Computers & Security,2024,136:103518. [24]UPPAL D,SINHA R,MEHRA V,et al.Malware detection and classification based on extraction of API sequences[C]//2014 International Conference on Advances in Computing,Communications and Informatics(ICACCI).IEEE,2014:2337-2342. [25]PASCANU R,STOKES J W,SANOSSIAN H,et al.Malware classification with recurrent networks[C]//2015 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP).IEEE,2015:1916-1920. [26]KOLOSNJAJI B,ZARRAS A,WEBSTER G,et al.Deep lear-ning for classification of malware systemcall sequences[C]//AI 2016:Advances in Artificial Intelligence:29th Australasian Joint Conference.Springer,2016:137-149. [27]DAI Y,LI H,QIAN Y,et al.SMASH:A malware detection method based on multi-feature ensemble learning[J].IEEE Access,2019,7:112588-112597. [28]SALEHI Z,SAMI A,GHIASI M.MAAR:Robust features to detect malicious activity based on API calls,their arguments and return values[J].Engineering Applications of Artificial Intelligence,2017,59:93-102. [29]CERDA P,VAROQUAUX G,KÉGL B.Similarity encoding for learning with dirtycategorical variables[J].Machine Learning,2018,107(8):1477-1494. [30]ZHU S,SHI J,YANG L,et al.Measuring and modeling the label dynamics of online {Anti-Malware} engines[C]//29th USENIX Security Symposium(USENIX Security 20).2020:2361-2378. [31]KÜCHLER A,MANTOVANI A,HAN Y,et al.Does everysecond count? time-based evolution of malware behavior in sandboxes[C]//NDSS 2021,Network and Distributed Systems Security Symposium.Internet Society,2021. [32]SEBASTIÁN S,CABALLERO J.Avclass2:Massive malwaretag extraction from av labels[C]//Proceedings of the 36th Annual Computer Security Applications Conference.2020:42-53. [33]JIANG Y,LI G,LI S.TagClass:A tool for extracting class-determined tags from massive malware labels via incremental parsing[C]//2023 53rd Annual IEEE/IFIP International Confe-rence on Dependable Systems and Networks(DSN).IEEE,2023:193-200. |
| [1] | LI Bo, MO Xian. Application of Large Language Models in Recommendation System [J]. Computer Science, 2025, 52(6A): 240400097-7. |
| [2] | LI Yingjian, WANG Yongsheng, LIU Xiaojun, REN Yuan. Cloud Platform Load Data Forecasting Method Based on Spatiotemporal Graph AttentionNetwork [J]. Computer Science, 2025, 52(6A): 240700178-8. |
| [3] | HE Chunhui, GE Bin, ZHANG Chong, XU Hao. Intelligent Error Correction Model for Chinese Idioms Fused with Fixed-length Seq2Seq Network [J]. Computer Science, 2025, 52(5): 227-234. |
| [4] | YUAN Mengjiao, LU Tianliang, HUANG Wanxin, HE Houhan. Benign-salient Region Based End-to-End Adversarial Malware Generation Method [J]. Computer Science, 2025, 52(10): 382-394. |
| [5] | ZHAO Chenyang, LIU Lei, JIANG He. Feature Construction for Effort-aware Just-In-Time Software Defect Prediction Based on Multi-objective Optimization [J]. Computer Science, 2025, 52(1): 232-241. |
| [6] | CHEN Liang, SUN Cong. Deep-learning Based DKOM Attack Detection for Linux System [J]. Computer Science, 2024, 51(9): 383-392. |
| [7] | CHEN Siyu, MA Hailong, ZHANG Jianhui. Encrypted Traffic Classification of CNN and BiGRU Based on Self-attention [J]. Computer Science, 2024, 51(8): 396-402. |
| [8] | LI Minzhe, YIN Jibin. TCM Named Entity Recognition Model Combining BERT Model and Lexical Enhancement [J]. Computer Science, 2024, 51(6A): 230900030-6. |
| [9] | LI Jinxia, BIAN Huaxing, WEN Fuguo, HU Tianmu, QIN Shihan, WU Han, MA Hui. Performance Risk Prediction of Power Grid Material Suppliers Based on XGBoost [J]. Computer Science, 2024, 51(6A): 230400115-9. |
| [10] | WANG Xiaolong, WANG Yanhui, ZHANG Shunxiang, WANG Caiqin, ZHOU Yuhao. Gender Discrimination Speech Detection Model Fusing Post Attributes [J]. Computer Science, 2024, 51(6): 338-345. |
| [11] | HE Jiaojun, CAI Manchun, LU Tianliang. Android Malware Detection Method Based on GCN and BiLSTM [J]. Computer Science, 2024, 51(4): 388-395. |
| [12] | WANG Yuhan, MA Fuyuan, WANG Ying. Construction of Fine-grained Medical Knowledge Graph Based on Deep Learning [J]. Computer Science, 2024, 51(11A): 230900157-7. |
| [13] | XIANG Heng, YANG Mingyou, LI Meng. Study on Named Entity Recognition of NOTAM Based on BiLSTM-CRF [J]. Computer Science, 2024, 51(11A): 240300148-6. |
| [14] | CAO Weikang, LIN Honggang. IoT Devices Identification Method Based on Weighted Feature Fusion [J]. Computer Science, 2024, 51(11A): 240100137-9. |
| [15] | QIN Zhongpiao, ZHOU Yatong, LI Zhe. Bank Transaction Fraud Detection Method Based on Graph Neural Network [J]. Computer Science, 2024, 51(11A): 240200024-8. |
|
||