Computer Science ›› 2015, Vol. 42 ›› Issue (10): 164-169.

Previous Articles     Next Articles

Collusion-free Rational Multi-secret Sharing Scheme

ZHANG En, SUN Quan-dang and LIU Ya-peng   

  • Online:2018-11-14 Published:2018-11-14

Abstract: A collusion-free scheme for rational multi-secret sharing was proposed.Collusive behavior and preventive measures were analyzed.The coalition-proof model and algorithm were developed to make the participants’ strategies satisfy computational coalition-proof equilibrium.The participants do not know whether the current round is a test round.Rational players can not gain more by coalition,so rational players have no incentive to collude in the protocol.In addition,the dealer doesn’t need to distribute a secret share among the participants,and the scheme assumes neither the availability of a trusted party nor multi-party computations in the secret reconstruction phase.Finally,every player can obtain multi-secret fairly.The scheme is collusion-free and avoids the inefficiency of the rational single secret sharing scheme.

Key words: Rational secret sharing,Game theory,Collusion-free,Provably secure

[1] Shamir A.How to share a secret[J].Communications of theACM,1979,22(11):612-613
[2] Blakeley G R.Safeguarding Cryptographic Keys[C]∥Procee-dings of the National Computer Conference,1979.New York:AFIPS Press,1979:313-317
[3] Chor B,Goldwasser S,Micali S.Verifiable Secret Sharing andAchieving Simultaneity in the Presence of Faults[C]∥Procee-dings of the 26th Annual Symposium on Foundations of Compu-ter Science,1985.Washington DC:IEEE Computer Society,1985:383-395
[4] Feldman P.A practical scheme for non-interactive verifiable secret sharing[C]∥Proceedings of the 28th IEEE Symp.On Foundations of Comp,Science(FOCS’ 87).Los Angeles:IEEE Computer Society,1987:427-437
[5] Hou Y C,Quan Z Y,Tsai C F,et al.Block-based progressive visual secret sharing[J].Information Sciences,2013,233(1):290-304
[6] Wu X T,Sun W.Improving the visual quality of random grid-based visual secret sharing[J].Signal Processing,2013,93(5):988-955
[7] Chien H-Y,Jan J-K,Tseng Y-M.A practical (t,n) multi-secret sharing scheme[J].IEICE Transactions on Fundamentals,2000,E83-A (12):2762-2765
[8] Yang Chou-chen,Chang Ting-yi,Huang Min-shang.A (t,n)multi-secret sharing scheme[J].Applied Mathematics and Computation,2004,151(2):483-490
[9] 庞辽军,裴庆祺,焦李成,等.基于ID的门限多重秘密共享方案[J].软件学报,2008,9(10):2739-2745 Pang Liao-jun,Pei Qing-qi,Jiao Li-cheng,et al.An Identity(ID)-Based Threshold Multi-Secret Sharing Scheme[J].Journal of Software,2008,9(10):2739-2745
[10] 裴庆祺,马建峰,庞辽军,等.基于身份自证实的秘密共享方案[J].计算机学报,2010,33(1):152-156 Pei Qing-qi,Ma Jian-feng,Pang Liao-jun,et al.An Identity(ID)-Based and Self-Certified Secret Sharing Scheme[J].Chinese Journal of Computers,2010,3(1):152-156
[11] Halpern J,Teague V.Rational Secret Sharing and Multiparty Computation[C]∥Proceedings of the 36th Annual ACM Symposium on Theory of Computing(STOC),2004.New York:ACM Press,2004:623-632
[12] Groce A,Katz J.Fair computation with rational players[C]∥Advances in Cryptology Eurocrypt,2012.UK,Springer,2012:81-98
[13] Garay J,Katz J,Maurer U.Rational protocol design:cryptography against incentive-driven adversaries[C]∥Proc.54th IEEE Symposium on Foundations of Computer Science,2013.Berkeley:IEEE Computer Society,2013:648-657
[14] 张恩,蔡永泉.理性的安全两方计算协议[J].计算机研究与发展,2013,50(7):1409-1417 Zhang En,Cai Yong-quan.Rational Secure Two-Party Computation Protocol[J].Journal of Computer Research and Development,2013,0(7):1409-1417
[15] Zhang En,Cai Yong-quan.Collusion-free Rational Secure Sum Protocol[J].Chinese Journal of Electronics,2013,22(3):563-566
[16] Kol G,Naor M.Cryptography and Game Theory:Designing Protocols for Exchanging Information[C]∥The Proceedings of the 5th Theory of Cryptography Conference (TCC),2008.Berlin:Springer,2008:317-336
[17] Kol G,Naor M.Games for exchanging information[C]∥Pro-ceedings of the 40th Annual ACM Symposium on Theory of Computing(STOC),2008.New York:ACM Press,2008:423-432
[18] Maleka S,Amjed S,Rangan C P.The Deterministic Protocol for Rational Secret Sharing[C]∥22th IEEE International Parallel and Distributed Processing Symposium,2008.New York:IEEE press,2008:1-7
[19] Izmalkov S,Lepinski M,Micali S.Veriably Secure Devices[C]∥5th Theory of Cryptography Conference(TCC 2008).LNCS 4948,Berlin:Springer,2008:273-301
[20] Micali S,Shelat A.Purely Rational Secret Sharing[C]∥6th Theory of Cryptography Conference(TCC 2009).LNCS 5444,Berlin:Springer,2009:54-71
[21] Isshiki T,Wada K,Tanaka K.A Rational Secret-SharingScheme Based on RSA-OAEP [J].IEICE Transactions on Fundamentals,2010,E93-A(1):42-49
[22] 张恩,蔡永泉.基于双线性对的可验证的理性秘密共享方案[J].电子学报,2012,40(5):1050-1054 Zhang En,Cai Yong-quan.A Verifiable Rational Secret Sharing Scheme Based on Bilinear Pairing[J].Acta Electronica Sinica,2012,0(5):1050-1054
[23] Zhang Z F,Liu M L.Rational secret sharing as extensive games[J].Science China Information Sciences,2013,56(3):1-13
[24] Yu Yang,Zhou Zhan-fei.An Efficient Rational Secret Sharing Protocol Resisting against Malicious Adversaries over Synchronous Channels[C]∥Information Security Cryptology LNCS 7763.Berlin:Springer,2013:69-89
[25] Tian You-liang,Ma Jian-feng,Peng Chang-gen,et al.Fair (t,n) threshold secret sharing scheme[J].IET Information Security,2013,7(2):106-112
[26] 谢识予.经济博弈论(第2版)[M].上海:复旦出版社,2002 Xie Shi-yu.Economic game theory(second edition)[M].Shanghai:Fudan press,2002
[27] Katz J.Bridging game theory and cryptography:Recent results and future directions[C]∥5th Theory of Cryptography Confe-rence.LNCS 4984,Berlin:Springer,2008:251-272
[28] Micali S,Rabin M,Vadhan S.Verifiable random functions[C]∥Proceedings of the 40th IEEE Symposium on Foundations of Computer Science.New York:IEEE press,1999:120-130
[29] Dodis Y,Yampolskiy A.A verifiable random function with short proof and keys[C]∥PKC2005.LNCS 3386,Berlin:Springer,2005:416-431

No related articles found!
Full text



No Suggested Reading articles found!