Computer Science ›› 2017, Vol. 44 ›› Issue (7): 185-190.doi: 10.11896/j.issn.1002-137X.2017.07.033
Previous Articles Next Articles
WANG Shi-xun, PAN Peng, CHEN Deng and LU Yan-sheng
[1] FREUND Y,SCHAPIRE R E.A Decision-theoretic Generalization of On-line Learning and an Application to Boosting[J].Journal of Computer and System Sciences,1997,55(1):119-139. [2] FRIEDMAN J,HASTIE T,TIBSHIRANI R.Additive Logistic Regression:A Statistical View of Boosting[J].The Annals of Statistics,2000,28(2):337-407. [3] MASNADI-SHIRAZI H,VASCONCELOS N.On the Design of Loss Functions for Classification:Theory,Robustness to Out-liers,and Savagebooost[C]∥Proceedings of Advances in Neural Information Processing Systems.2009:1049-1056. [4] MASNADI-SHIRAZI H,MAHADEVAN V, VASCONCELOS N.On the Design of Robust Classifiers for Computer Vision[C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.2010:779-786. [5] SABERIAN M J,MASNADI-SHIRAZI H,VASCONCELOS N.TaylorBoost:First and Second-order Boosting Algorithms with Explicit Margin Control[C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.2011:2929-2934. [6] ABOUELENIEN M,YUAN X.Boosting for Learning fromMulticlass Data Sets via a Regularized Loss Function[C]∥Proceedings of IEEE International Conference on Granular Computing.2013:4-9. [7] DANIELSSON O,RASOLZADEH B,CARLSSON S.GatedClassifiers:Boosting under High Intra-Class Variation[C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.2011:2673-2680. [8] SABERIAN M J,VASCONCELOS N.Boosting Algorithms for Simultaneous Feature Extraction and Selection[C]∥Procee-dings of IEEE Conference on Computer Vision and Pattern Re-cognition.2012:2448-2455. [9] DIETTERICH T G,BAKIRI G.Solving Multiclass Learning Pro-blems via Error Correcting Output Codes[J].Journal of Artifical Intelligence Research,1995,2:263-286 . [10] SEIFFERT C,KHOSHGOFTAAR T M, HULSE V,et al.RUSBoost:Improving Classification Performance When Trai-ning Data Is Skewed[C]∥Proceedings of IEEE International Conference on Pattern Recognition.2008:1-4. [11] KGL B,BUSA-FEKETE R.Boosting Products of Base Classifiers[C]∥Proceedings of the 26th International Conference on Machine Learning.2009:497-504. [12] ZHU J,ZOU H,ROSSET S,et al.Multi-class AdaBoost[J].Satistics and Its Interface,2009,2(3):349-360. [13] MUKHERJEE I,SCHAPIRE R E.A Theory of MulticlassBoosting[J].Journal of Machine Learning Research,2013,14(1):437-497. [14] SABERIAN M J,VASCONCELOS N.Multiclass Boosting:Theory and Algorithms[C]∥Proceedings of Advances in Neural Information Processing Systems.2011:2124-2132. [15] MASNADI-SHIRAZI H,VASCONCELOS N.Cost-sensitive Boos-ting[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(2):294-309. [16] ABE N,ZADROZNY B,LANGFORD J.An Iterative Methodfor Multi-class Cost-sensitive Learning[C]∥Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2004:3-11. [17] LOZANO A C,ABE N.Multi-class Cost-sensitive Boosting with P-norm Loss Functions[C]∥Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2008:506-514. [18] WANG J.Boosting the Generalized Margin in Costsensitive Mul-ticlass Classification[J].Journal of Computational and Graphical Statistics,2013,22(1):178-192. [19] BEIJBOM O,SABERIAN M,KRIEGMAN D,et al.Guess-Averse Loss Functions for Cost-sensitive Multiclass Boosting[C]∥Proceedings of the 31st International Conference on Machine Lear-ning.2014:586-594. [20] UCI:Machine Learning Repositery.http://archive.ics.uci.edu/ml/datasets.html. [21] WARMUTH M K,LIAO J,RTSCH G.Totally CorrectiveBoosting Algorithm That Maximize the Margin[C]∥Procee-dings of 23rd ACM International Conference on Machine Lear-ning.2006:1001-1008. |
No related articles found! |
|