计算机科学 ›› 2019, Vol. 46 ›› Issue (8): 28-34.doi: 10.11896/j.issn.1002-137X.2019.08.005

• 大数据与数据科学* • 上一篇    下一篇

融合动态协同过滤和深度学习的推荐算法

邓存彬1,2, 虞慧群1, 范贵生1   

  1. (华东理工大学计算机科学与工程系 上海200237)1
    (上海市计算机软件测评重点实验室 上海201112)2
  • 收稿日期:2018-07-08 发布日期:2019-08-15
  • 通讯作者: 虞慧群(1967-),男,教授,博士生导师,CCF高级会员,主要研究方向为软件工程、形式化方法,E-mail:yhq@ecust.edu.cn
  • 作者简介:邓存彬(1993-),男,硕士生,主要研究方向为数据挖掘、机器学习;范贵生(1980-),男,副研究员,CCF会员,主要研究方向为软件工程、可信计算
  • 基金资助:
    国家自然科学基金(61702334,61772200),上海市浦江人才资助计划(17PJ1401900),上海市自然科学基金资助项目(17ZR1406900,17ZR1429700),华东理工大学教育科研基金(ZH1726108),上海应用技术学院资助合作创新基金会(XTCX2016-20)

Integrating Dynamic Collaborative Filtering and Deep Learning for Recommendation

DENG Cun-bin1,2, YU Hui-qun1, FAN Gui-sheng1   

  1. Department of Computer Science and Engineering,East China University of Science and Technology,Shanghai 200237,China)1
    (Shanghai Key Laboratory of Computer Software Evaluating and Testing,Shanghai 201112,China)2
  • Received:2018-07-08 Published:2019-08-15

摘要: 在信息爆炸的时代,推荐系统在减轻信息过载方面发挥了巨大的作用。目前,推荐系统普遍使用传统的协同过滤算法学习用户商品行为矩阵中的隐向量,但是其存在数据稀疏性和冷启动问题,同时未考虑用户的兴趣偏好以及商品的受欢迎程度会随时间发生改变,这极大地限制了推荐的准确性。已有学者利用深度学习模型学习辅助信息的特征来扩充协同过滤算法的特征,取得了一定的成果,但并未充分有效地解决全部问题。以电影推荐为研究对象,提出了融合动态协同过滤和深度学习的推荐算法。首先,利用动态协同过滤算法融入时间特征;然后,利用深度学习模型来学习用户和电影特征信息,以形成高维潜在空间的用户特征和电影特征的隐向量;最后,将其融入到动态协同过滤算法中。以MovieLens为实验数据集对电影的评分进行预测,实验结果表明所提算法提高了电影评分预测的准确性。

关键词: 电影推荐, 隐向量, 深度学习, 动态协同过滤

Abstract: In the era of information explosion,the recommendation system plays an enormous role in reducing information overload.At present,the recommendation system generally uses the traditional collaborative filtering algorithm to learn the hidden vector in the user-item behavior matrix,but it has the problem of data sparseness and cold start,and does not consider the customer preferences and the popularity dynamics of items.This greatly limits the accuracy of the recommendation system.Some scholars have used the deep learning model to learn the features of the auxiliary information to enrich the features of the collaborative filtering algorithm,and achieved certain results,which does not fully solve all the problems.This paper took film recommendation as the research object,and proposed a recommendation algorithm that combines dynamic collaborative filtering and deep learning.Firstly,the dynamic collaborative filtering algorithm incorporates temporal features.Secondly,it uses deep learning model to learn user and movie feature information to form the hidden vector of user features and movie features in high-dimensional latent space.Finally,it is integrated into the dynamic collaborative filtering algorithm.Extensive experiments on MovieLens datasets show that the proposed method improves the accuracy of film score prediction

Key words: Movie recommendation, Hidden vector, Deep learning, Dynamic collaborative filtering

中图分类号: 

  • TP311
[1] SUN H,HAN Z.An improved collaborative filtering algorithm for popular items of fusion items[J].Miniature Microcomputer Systems,2018,39(4):638-643.(in Chinese) 孙红,韩震.融合物品热门因子的协同过滤改进算法[J].小型微型计算机系统,2018,39(4):638-643.
[2] WENG X L,WANG Z J.Research progress of collaborative filtering recommendation algorithm[J].Computer Engineering and Applications,2018,54(1):25-31.(in Chinese) 翁小兰,王志坚.协同过滤推荐算法研究进展[J].计算机工程与应用,2018,54(1):25-31.
[3] XU R,ZHANG W.A recommendation system scoring prediction framework based on Adaboost algorithm[J].Journal of ComputerSystems,2017,26(8):107-113.(in Chinese) 徐日,张谧.基于Adaboost算法的推荐系统评分预测框架[J].计算机系统应用,2017,26(8):107-113.
[4] PORTEOUS I,ASUNCION A,WELLING M.Bayesian matrix factorization with side information and dirichlet process mixtures [C]∥Twenty-Fourth AAAI Conference on Artificial Intelligence.AAAI Press,2010:563-568.
[5] HUANG L W,JIANG B T,LU S Y,et al.A Survey of Recommendation Systems Based on Deep Learning [J].Chinese Journal of Computers,2018,41(7):191-219.(in Chinese) 黄立威,江碧涛,吕守业,等.基于深度学习的推荐系统研究综述[J].计算机学报,2018,41(7):191-219.
[6] ZHU Y,LI H,LIAO Y,et al.What to do next:modeling user behaviors by time-lstm [C]∥Twenty-Sixth International Joint Conference on Artificial Intelligence.2017:3602-3608.
[7] ZHENG L,NOROOZI V,YU P S.Joint deep modeling of users and items using reviews for recommendation[C]∥Proceedings of the Tenth ACM International Conference on Web Search and Data Mining.ACM,2017:425-434.
[8] CHENG H T,KOC L,HARMSEN J,et al.Wide & deep lear- ning for recommender systems[C]∥Proceedings of the 1st Workshop on Deep Learning for Recommender Systems.ACM,2016:7-10.
[9] QU Y,CAI H,REN K,et al.Product-based neural networks for user response prediction[C]∥2016 IEEE 16th International Conference on Data Mining (ICDM).IEEE,2016:1149-1154.
[10] HE X,LIAO L,ZHANG H,et al.Neural collaborative filtering[C]∥Proceedings of the 26th International Conference on World Wide Web.International World Wide Web Conferences Steering Committee,2017:173-182.
[11] ZHAO W,WANG W,YE J,et al.Leveraging long and short- term information in content-aware movie recommendation[J].arXiv:1712.09059,2017.
[12] KIM D,PARK C,OH J,et al.Convolutional matrix factorization for document context-aware recommendation[C]∥Proceedings of the 10th ACM Conference on Recommender Systems.ACM,2016:233-240.
[13] WEI J,HE J,CHEN K,et al.Collaborative filtering and deep learning based recommendation system for cold start items[J].Expert Systems with Applications,2017,69:29-39.
[14] WANG H,WANG N,YEUNG D Y.Collaborative deep learning for recommender systems[C]∥Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.ACM,2015:1235-1244.
[15] KOREN Y.Collaborative filtering with temporal dynamics[C]∥ Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining.ACM,2009:447-456.
[16] HARPER F M,KONSTAN J A.The movieLens datasets[J].Acm Transactions on Interactive Intelligent Systems,2016,5(4):1-19.
[17] KAWALE J,KAWALE J,FU Y.Deep collaborative filtering via marginalized denoising auto-encoder [C]∥ACM International on Conference on Information and Knowledge Management.ACM,2015:811-820.
[18] KIM D,PARK C,OH J,et al.Deep hybrid recommender systems via exploiting document context and statistics of items [J].Information Sciences,2017,417(C):72-87.
[1] 周燕, 曾凡智, 吴臣, 罗粤, 刘紫琴. 基于深度学习的三维形状特征提取方法[J]. 计算机科学, 2019, 46(9): 47-58.
[2] 马露, 裴伟, 朱永英, 王春立, 王鹏乾. 基于深度学习的跌倒行为识别[J]. 计算机科学, 2019, 46(9): 106-112.
[3] 李青华, 李翠平, 张静, 陈红, 王绍卿. 深度神经网络压缩综述[J]. 计算机科学, 2019, 46(9): 1-14.
[4] 王嫣然, 陈清亮, 吴俊君. 面向复杂环境的图像语义分割方法综述[J]. 计算机科学, 2019, 46(9): 36-46.
[5] 孙中锋, 王静. 用于基于方面情感分析的RCNN-BGRU-HN网络模型[J]. 计算机科学, 2019, 46(9): 223-228.
[6] 缪永伟, 李高怡, 鲍陈, 张旭东, 彭思龙. 基于卷积神经网络的图像局部风格迁移[J]. 计算机科学, 2019, 46(9): 259-264.
[7] 杜威, 丁世飞. 多智能体强化学习综述[J]. 计算机科学, 2019, 46(8): 1-8.
[8] 郭旭, 朱敬华. 基于用户向量化表示和注意力机制的深度神经网络推荐模型[J]. 计算机科学, 2019, 46(8): 111-115.
[9] 张义杰, 李培峰, 朱巧明. 基于自注意力机制的事件时序关系分类方法[J]. 计算机科学, 2019, 46(8): 244-248.
[10] 李舟军,王昌宝. 基于深度学习的机器阅读理解综述[J]. 计算机科学, 2019, 46(7): 7-12.
[11] 张琳娜,陈建强,陈晓玲,岑翼刚,阚世超. 面向行车视频目标实时检测的轻量级SSD网络[J]. 计算机科学, 2019, 46(7): 233-237.
[12] 李健, 杨祥如, 何斌. 基于深度学习的几何特征匹配方法[J]. 计算机科学, 2019, 46(7): 274-279.
[13] 刘梦娟,曾贵川,岳威,仇笠舟,王加昌. 面向展示广告的点击率预测模型综述[J]. 计算机科学, 2019, 46(7): 38-49.
[14] 陈思文, 刘玉江, 刘冬, 苏晨, 赵地, 钱林学, 张佩珩. 基于AlexNet模型和自适应对比度增强的乳腺结节超声图像分类[J]. 计算机科学, 2019, 46(6A): 146-152.
[15] 霍星, 费志伟, 赵峰, 邵堃. 深度学习在驾驶员安全带检测中的应用[J]. 计算机科学, 2019, 46(6A): 182-187.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[2] 王振武,吕小华,韩晓辉. 基于四叉树分割的地形LOD技术综述[J]. 计算机科学, 2018, 45(4): 34 -45 .
[3] 王帅,刘娟,毕姚姚,陈哲,郑群花,段慧芳. 基于两步聚类和随机森林的乳腺腺管自动识别方法[J]. 计算机科学, 2018, 45(3): 247 -252 .
[4] 王振朝,侯欢欢,连蕊. 抑制CMT中乱序程度的路径优化方案[J]. 计算机科学, 2018, 45(4): 122 -125 .
[5] 施超,谢在鹏,柳晗,吕鑫. 基于稳定匹配的容器部署策略的优化[J]. 计算机科学, 2018, 45(4): 131 -136 .
[6] 韩奎奎,谢在鹏,吕鑫. 一种基于改进遗传算法的雾计算任务调度策略[J]. 计算机科学, 2018, 45(4): 137 -142 .
[7] 庞博,金乾坤,合尼古力·吾买尔,齐兴斌. 软件定义网络中基于网络切片和ILP模型的路由方案[J]. 计算机科学, 2018, 45(4): 143 -147 .
[8] 郭帅,刘亮,秦小麟. 用户偏好约束的空间关键词范围查询处理方法[J]. 计算机科学, 2018, 45(4): 182 -189 .
[9] 吕涛,郝泳涛. 基于相似性匹配和聚类的K线模式可盈利性研究[J]. 计算机科学, 2018, 45(3): 182 -188 .
[10] 冉正,罗蕾,晏华,李允. AUTOSAR可运行实体-任务自动映射方法研究[J]. 计算机科学, 2018, 45(4): 190 -195, 226 .