计算机科学 ›› 2015, Vol. 42 ›› Issue (10): 170-174.

• 软件与数据库技术 • 上一篇    下一篇

面向故障定位的基于MC/DC的测试用例约简方法

王瑞,田宇立,周东红,李 宁,李战怀   

  1. 西北工业大学计算机学院 西安710072;北京信息控制研究所 北京100048,西北工业大学计算机学院 西安710072,北京信息控制研究所 北京100048,西北工业大学计算机学院 西安710072,西北工业大学计算机学院 西安710072
  • 出版日期:2018-11-14 发布日期:2018-11-14
  • 基金资助:
    本文受国家自然科学基金(61402370),中国航天科技集团公司航天科技创新基金(2014H03FK011)资助

Test-suite Reduction Based on MC/DC in Software Fault Localization

WANG Rui, TIAN Yu-li, ZHOU Dong-hong, LI Ning and LI Zhan-huai   

  • Online:2018-11-14 Published:2018-11-14

摘要: 对不断更新的软件进行回归测试时,持续增加的测试用例会造成累计测试用例数量庞大,进而影响测试成本。在故障定位领域,已有研究在考虑语句覆盖、路径覆盖等的基础上,提出了CMR&PVR等不同的测试用例约简方法。然而,这些方法在一定程度上影响了原始测试用例集的MC/DC(修订的条件/判定)覆盖率。提出一种以MC/DC覆盖为基础的综合测试用例约简方法MCDCR,利用该方法对原始测试用例集约简后,在确保原有故障定位准确性并保持较高约简比的同时,大幅提高了测试用例对程序的MC/DC覆盖率。采用Ochiai方法在Siemens 程序集上进行了实验及验证,结果表明MCDCR约简方法的综合效果明显优于已有的约简方法。

关键词: 软件故障定位,测试用例约简,MC/DC覆盖率

Abstract: In the process of software regression testing,frequently modifying software leads to a huge test suite which makes testing more expensive.To address this problem,researches have proposed methods about test suite reduction in consideration of statement/path coverage.However,these methods more or less affect the integrity of MC/DC coverage of the original test suite.We proposed a new approach named MCDCR based on MC/DC coverage rate.Our MCDCR method can guarantee MC/DC coverage while doing no harm to the effectiveness of fault localization and test suite reduction rate.Experiment shows that MCDCR performs better than the existing reduction methods comprehensively.

Key words: Software fault localization,Test-suite reduction,MC/DC coverage

[1] Jones JA,Harrold MJ,Stasko J.Visualization of test information to assist fault localization[C]∥24th International Confe-rence on Software Engineering(ICSE2002).2002:467-477
[2] Wong WE,Debroy V.A survey of software fault localization.Technical report[R].The University of Texas at Dallas,2009
[3] 鞠小林,姜淑娟,张艳梅,等.软件故障定位技术进展[J].计算机科学与探索,2012,6(6):481-494 Ju Xiao-lin,Jiang Shu-juan,Zhang Yan-mei,et al.Advances in fault localization techniques[J].Journal of Frontiers of Compu-ter Science and Technology,2012,6(6):481-494
[4] 陈翔,顾卫江,徐慧,等.回归测试用例选择技术研究综述[J].计算机科学,2013,0(10):1-9 Chen Xiang,Gu Wei-jiang,Xu Hui,et al.Regression Testing Selection Techniques:A State-of-the-art Review[J].Computer Scie-nce,2013,0(10):1-9
[5] Chen Zhen-yu,Xu Bao-wen,Zhang Xiao-fang,et al.A novel approach for test suite reduction based on requirement relation contraction[C]∥23rd ACM symposium on Applied computing (SAC2008).Fortaleza,Ceará,Brazil,2008:390-394
[6] Hao Dan,Xie Tao,Zhang Lu,et al.Test input reduction for result inspection to facilitate fault localization[J].Automated Software Engineering,2010,7:5-31
[7] Yu Yan-bing,Jones J A,Harrold M J.An empirical study of the effects of test suite reduction on fault localization[C]∥Procee-ding of 30th International Conference on Software Engineering (ICSE2008).Leipzig,2008:201-210
[8] Jones J A,Harrold M J.Test-suite reduction and prioritization for modified condition/decision coverage[J].IEEE Transactions of Software Engineering,2003,9(3):195-209
[9] Gong Dan-dan,Wang Tian-tian,Su Xiao-hong,et al.A test-suite reduction approach to improving fault-localization effectiveness[J].Computer Languages,Systems & Structures,2013,39(3):95-108
[10] Jiang Bo,Zhai Ke,Tse T H,et al.On the adoption of MC/DC and control-flow adequacy for a tight integration of program testing and statistical fault localization[J].Information and Software Technology,2013,5(5):897-917
[11] Yu Kai,Lin Meng-xiang,Gao qing,et al.Locating faults using multiple spectra-specific models[C]∥26th Annual ACM Symposium on Applied Computing (SAC2011).TaiChung,Taiwan,2011:1404-1410
[12] Abreu R,Zoeteweij P,Van Gemund A J C.An evaluation ofsimilarity coefficients for software fault localization[C]∥2nd Pacific Rim International Symposium on Dependable Computing(PRDC2006).2006:39-46

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 编辑部. 新网站开通,欢迎大家订阅![J]. 计算机科学, 2018, 1(1): 1 .
[2] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75, 88 .
[3] 夏庆勋,庄毅. 一种基于局部性原理的远程验证机制[J]. 计算机科学, 2018, 45(4): 148 -151, 162 .
[4] 厉柏伸,李领治,孙涌,朱艳琴. 基于伪梯度提升决策树的内网防御算法[J]. 计算机科学, 2018, 45(4): 157 -162 .
[5] 王欢,张云峰,张艳. 一种基于CFDs规则的修复序列快速判定方法[J]. 计算机科学, 2018, 45(3): 311 -316 .
[6] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[7] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[8] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[9] 刘琴. 计算机取证过程中基于约束的数据质量问题研究[J]. 计算机科学, 2018, 45(4): 169 -172 .
[10] 钟菲,杨斌. 基于主成分分析网络的车牌检测方法[J]. 计算机科学, 2018, 45(3): 268 -273 .