Computer Science ›› 2019, Vol. 46 ›› Issue (4): 66-72.doi: 10.11896/j.issn.1002-137X.2019.04.010
• Big Data & Data Science • Previous Articles Next Articles
RU Feng, XU Jin, CHANG Qi, KAN Dan-hui
CLC Number:
[1]RIPKE S,NEALE B M,CORVIN A,et al.Biological insights from 108 schizophrenia-associated genetic loci[J].Nature,2014,511(7510):421. [2]LIU J,CALHOUN V D.A review of multivariate analyses in imaging genetics.Frontiers in Neuroinformatics,2014,8(29):1-11. [3]EDITION F.Diagnostic and statistical manual of mental disorders[M].Arlington:American Psychiatric Publishing,2013. [4]LIU J,PEARLSON G,WINDEMUTH A,et al.Combining fMRI and SNP data to investigate connections between brain function and genetics using parallel ICA[J].Human Brain Mapping,2009,30(1):241-255. [5]LE FLOCH É,GUILLEMOT V,FROUIN V,et al.Significant correlation between a set of genetic polymorphisms and a functional brain network revealed by feature selection and sparse Partial Least Squares[J].Neuroimage,2012,63(1):11-24. [6]CHI E C,ALLEN G I,ZHOU H,et al.Imaging genetics via sparse canonical correlation analysis[C]∥2013 IEEE 10th International Symposium on Biomedical Imaging (ISBI).IEEE,2013:740-743. [7]DU L,HUANG H,YAN J,et al.Structured sparse canonical correlation analysis for brain imaging genetics:an improved GraphNet method[J].Bioinformatics,2016,32(10):1544-1551. [8]BOGDAN R,SALMERON B J,CAREY C E,et al.Imaging Genetics and Genomics in Psychiatry:A Critical Review of Progress and Potential[J].Biological Psychiatry,2017,82(3):165-175. [9]HU W,LIN D,CAO S,et al.Adaptive sparse multiple canonical correlation analysis with application to imaging (epi)genomics study of schizophrenia[J].IEEE Transactions on Biomedical Engineering,2018,65(2):390-399. [10]DU L,HUANG H,YAN J,et al.Structured sparse CCA for brain imaging genetics via graph OSCAR[J].BMC Systems Bio-logy,2016,10(3):68-77. [11]HOTELLING H.Relations Between Two Sets of Variates[J].Biometrika,1936,28(3/4):321-377. [12]WITTEN D M,TIBSHIRANI R J.Extensions of Sparse Cano- nical Correlation Analysis with Applications to Genomic Data[J].Statistical Applications in Genetics & Molecular Biology,2009,8(1):1-27. [13]TIBSHIRANI R,SAUNDERS M,ROSSET S,et al.Sparsity and smoothness via the fused lasso[J].Journal of the Royal Statistical Society,2010,67(1):91-108. [14]HYVÄRINEN A.Fast and Robust Fixed-Point Algorithms for Independent Component Analysis[J].IEEE Transactions on Neural Networks,1999,10(3):626-634. [15]HYVÄRINEN A.New Approximations of Differential Entropy for Independent Component Analysis and Projection Pursuit[J].Advances in Neural Information Processing Systems,1997,10:273-279. [16]CHEN X,LIU H.An Efficient Optimization Algorithm for Structured Sparse CCA,with Applications to eQTL Mapping[J].Statistics in Biosciences,2012,4(1):3-26. [17]HASTIE T.A penalized matrix decomposition,with applications to sparse principal components and canonical correlation analysis[J].Biostatistics,2009,10(3):515-534. [18]FANG J,LIN D,SCHULZ C,et al.Joint sparse canonical correlation analysis for detecting differential imaging genetics mo-dules[J].Bioinformatics,2016,32(22):3480-3488. [19]HU W,LIN D,CALHOUN V D,et al.Integration of SNPs-FMRI-methylation data with sparse multi-CCA for schizophrenia study∥Engineering in Medicine & Biology Society.IEEE,2016. [20]CAO H,LIN D,DUAN J,et al.Biomarker Identification for Dia- gnosis of Schizophrenia with Integrated Analysis of fMRI and SNPs[C]∥IEEE International Conference on Bioinformatics and Biomedicine.2012:223-228. [21]LAW M H,COTTON R G,BERGER G E.The role of phospholipases A2 in schizophrenia[J].Molecular Psychiatry,2006,11(6):547-556. [22]SANDERS A R,DUAN J,DRIGALENKO E I,et al.Transcriptome study of differential expression in schizophrenia[J].Human Molecular Genetics,2013,22(24):5001-5014. [23]CAO H,DUAN J,LIN D,et al.Integrating fMRI and SNP data for biomarker identification for schizophrenia with a sparse representation based variable selection method[J].Bmc Medical Genomics,2013,6 (3):1-8. [24]OZDEMIR H,ERTUGRUL A,BASAR K,et al.Differential effects of antipsychotics on hippocampal presynaptic protein expressions and recognition memory in a schizophrenia model in mice[J].Progress in neuro-psychopharmacology & biological psychiatry,2012,39(1):62-68. [25]KIRCHER T T,THIENEL R.Functional brain imaging of symptoms and cognition in schizophrenia[J].Progress in Brain Research,2005,150(2):299-308. |
[1] | TIAN Xu, CHANG Kan, HUANG Sheng, QIN Tuan-fa. Single Image Super-resolution Algorithm Using Residual Dictionary and Collaborative Representation [J]. Computer Science, 2020, 47(9): 135-141. |
[2] | DONG Ming-gang, HUANG Yu-yang, JING Chao. K-Nearest Neighbor Classification Training Set Optimization Method Based on Genetic Instance and Feature Selection [J]. Computer Science, 2020, 47(8): 178-184. |
[3] | ZHANG Yan, QIN Liang-xi. Improved Salp Swarm Algorithm Based on Levy Flight Strategy [J]. Computer Science, 2020, 47(7): 154-160. |
[4] | WANG Meng, DING Zhi-jun. New Device Fingerprint Feature Selection and Model Construction Method [J]. Computer Science, 2020, 47(7): 257-262. |
[5] | CHENG Zhong-Jian, ZHOU Shuang-e and LI Kang. Sparse Representation Target Tracking Algorithm Based on Multi-scale Adaptive Weight [J]. Computer Science, 2020, 47(6A): 181-186. |
[6] | PENG Wei, HU Ning and HU Jing-Jing. Overview of Research on Image Steganalysis Algorithms [J]. Computer Science, 2020, 47(6A): 325-331. |
[7] | LI Jin-xia, ZHAO Zhi-gang, LI Qiang, LV Hui-xian and LI Ming-sheng. Improved Locality and Similarity Preserving Feature Selection Algorithm [J]. Computer Science, 2020, 47(6A): 480-484. |
[8] | WU Qing-hong, GAO Xiao-dong. Face Recognition in Non-ideal Environment Based on Sparse Representation and Support Vector Machine [J]. Computer Science, 2020, 47(6): 121-125. |
[9] | ZHANG Qin, CHEN Hong-mei, FENG Yun-fei. Overlapping Community Detection Method Based on Rough Sets and Density Peaks [J]. Computer Science, 2020, 47(5): 72-78. |
[10] | LI Gang, WANG Chao, HAN De-peng, LIU Qiang-wei, LI Ying. Study on Multimodal Image Genetic Data Based on Deep Principal Correlated Auto-encoders [J]. Computer Science, 2020, 47(4): 60-66. |
[11] | WU Yu-kun,XIAO Jie,Wei William LEE,LOU Ji-lin. Support Vector Machine Model Based on Grey Wolf Optimization Fused Asymptotic [J]. Computer Science, 2020, 47(2): 37-43. |
[12] | WANG Sheng-wu,CHEN Hong-mei. Feature Selection Method Based on Rough Sets and Improved Whale Optimization Algorithm [J]. Computer Science, 2020, 47(2): 44-50. |
[13] | ZHU Zhang-peng, CHEN Chang-bo. Variable Ordering Selection for Cylindrical Algebraic Decomposition Based on Hierarchical Neural Network [J]. Computer Science, 2020, 47(11A): 106-110. |
[14] | WANG Rui-jie, LI Jun-huai, WANG Kan, WANG Huai-jun, SHANG Xun-chao, TU Peng-jia. Feature Selection Method for Behavior Recognition Based on Improved Feature Subset Discrimination [J]. Computer Science, 2020, 47(11A): 204-208. |
[15] | YI Yu-gen, LI Shi-cheng, PEI Yang, CHEN Lei, DAI Jiang-yan. Feature Selection Method Combined with Multi-manifold Structures and Self-representation [J]. Computer Science, 2020, 47(11A): 474-478. |
|