Computer Science ›› 2021, Vol. 48 ›› Issue (6A): 250-254.doi: 10.11896/jsjkx.200700102
• Big Data & Data Science • Previous Articles Next Articles
ZHOU Gang, GUO Fu-liang
CLC Number:
[1] 王清.集成学习中若干关键问题的研究[D].上海:复旦大学,2011. [2] BREIMAN L.Bagging Predictors [J].Machine Learning,1996,24(2):123-140. [3] DORIGO M.Optimization,Learning and Natural Algorithms[D].Milan:Dipartimento di Elettronica,Politecnio di Milano,1992. [4] FREUND Y,SCHAPIRE R E.A decision-theoretic generalization of on-line learning and an application to boosting[C]//Barcelona:Proceedings of the 2nd European Conference on Computational Learning Theory.1995:23-37. [5] WOLPERT D H.Stacked Generalization[M].Springer US,2011. [6] 郭福亮,周钢.集成学习中预测精度的影响因素分析[J].兵工自动化,2019,38(1):78-83. [7] 王秀霞.分类器的选择性集成及其差异性研究[D].兰州:兰州理工大学,2011. [8] 张春霞,张讲社.选择性集成学习算法综述[J].计算机学报,2011,34(8):1399-1410. [9] YIN H,HUY P.An Imbalanced Feature Selection AlgorithmBased on Random Forest[J].Acta Scientia rum Naturalism Universitatis Sannyasins,2014,53(5):59-65. [10] BROWN G,WYATT J L,TIÑO P,et al.Managing Diversity in Regression Ensembles[J].Journal of Machine Learning Research,2005,6(1):1621-1650. [11] 孙博.经典集成学习算法的有效性解释及算法改进研究[D].南京:南京航空航天大学,2016. [12] 徐继伟,杨云.集成学习方法:研究综述[J].云南大学学报(自然科学版),2018,40(6):1082-1092. [13] 姜正申,刘宏志,付彬,等.集成学习的泛化误差和AUC分解理论及其在权重优化中的应用[J].计算机学报,2019,42(1):1-15. [14] KEARNS M,VAZIRANI U.The Probably Approximately Correct Learning Model[M].MIT Press,1994. [15] 唐伟,周志华.基于Bagging的选择性聚类集成[J].软件学报,2005,16(4):496-502. [16] 张丽新.高维数据的特征选择及基于特征选择的集成学习研究[D].北京:清华大学,2004. [17] 吕子昂,罗四维,杨坚,等.模型的固有复杂度和泛化能力与几何曲率的关系[J].计算机学报,2007(7):1094-1103. [18] VENKATESH B,ANURADHA J.A Review of Feature Selection and Its Methods[J].Cybernetics and Information Technologies,2019,29(1):3-26. [19] 张晶,李裕,李培培.基于随机子空间的多标签类属特征提取算法[J].计算机应用研究,2019,36(2):25-29. [20] 赵云,刘惟一.基于遗传算法的特征选择方法[J].计算机工程与应用,2004,40(15):52-54. [21] IZUTANI A,UEHARA K.A Modeling Approach Using Multiple Graphs for Semi-Supervised Learning[C]//International Conference on Discovery Science.2008:296-307. [22] 翟俊海,刘博,张素芳,等.基于相对分类信息熵的进化特征选择算法[J].模式识别与人工智能,2016,29(8):682-690. [23] 叶东毅,黄翠微,赵斌.粗糙集中属性约简的一个贪心算法[J].系统工程与电子技术,2000,22(9):63-65. [24] HALL M A.Correlation-based Feature Selection for Discreteand Numeric Class Machine Learning [C]//Seventeenth International Conference on Machine Learning.2000:359-366. [25] 黎竹平.基于特征选择技术的集成学习方法及其应用研究[D].哈尔滨:哈尔滨工业大学,2018. [26] 孙博,王建东,陈海燕,等.集成学习中的多样性度量[J].控制与决策,2014(3):385-395. |
[1] | LI Bin, WAN Yuan. Unsupervised Multi-view Feature Selection Based on Similarity Matrix Learning and Matrix Alignment [J]. Computer Science, 2022, 49(8): 86-96. |
[2] | HU Yan-yu, ZHAO Long, DONG Xiang-jun. Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification [J]. Computer Science, 2022, 49(7): 73-78. |
[3] | KANG Yan, WANG Hai-ning, TAO Liu, YANG Hai-xiao, YANG Xue-kun, WANG Fei, LI Hao. Hybrid Improved Flower Pollination Algorithm and Gray Wolf Algorithm for Feature Selection [J]. Computer Science, 2022, 49(6A): 125-132. |
[4] | LIN Xi, CHEN Zi-zhuo, WANG Zhong-qing. Aspect-level Sentiment Classification Based on Imbalanced Data and Ensemble Learning [J]. Computer Science, 2022, 49(6A): 144-149. |
[5] | KANG Yan, WU Zhi-wei, KOU Yong-qi, ZHANG Lan, XIE Si-yu, LI Hao. Deep Integrated Learning Software Requirement Classification Fusing Bert and Graph Convolution [J]. Computer Science, 2022, 49(6A): 150-158. |
[6] | WANG Yu-fei, CHEN Wen. Tri-training Algorithm Based on DECORATE Ensemble Learning and Credibility Assessment [J]. Computer Science, 2022, 49(6): 127-133. |
[7] | HAN Hong-qi, RAN Ya-xin, ZHANG Yun-liang, GUI Jie, GAO Xiong, YI Meng-lin. Study on Cross-media Information Retrieval Based on Common Subspace Classification Learning [J]. Computer Science, 2022, 49(5): 33-42. |
[8] | CHEN Zhuang, ZOU Hai-tao, ZHENG Shang, YU Hua-long, GAO Shang. Diversity Recommendation Algorithm Based on User Coverage and Rating Differences [J]. Computer Science, 2022, 49(5): 159-164. |
[9] | CHU An-qi, DING Zhi-jun. Application of Gray Wolf Optimization Algorithm on Synchronous Processing of Sample Equalization and Feature Selection in Credit Evaluation [J]. Computer Science, 2022, 49(4): 134-139. |
[10] | SUN Lin, HUANG Miao-miao, XU Jiu-cheng. Weak Label Feature Selection Method Based on Neighborhood Rough Sets and Relief [J]. Computer Science, 2022, 49(4): 152-160. |
[11] | XIA Yuan, ZHAO Yun-long, FAN Qi-lin. Data Stream Ensemble Classification Algorithm Based on Information Entropy Updating Weight [J]. Computer Science, 2022, 49(3): 92-98. |
[12] | LI Zong-ran, CHEN XIU-Hong, LU Yun, SHAO Zheng-yi. Robust Joint Sparse Uncorrelated Regression [J]. Computer Science, 2022, 49(2): 191-197. |
[13] | REN Shou-peng, LI Jin, WANG Jing-ru, YUE Kun. Ensemble Regression Decision Trees-based lncRNA-disease Association Prediction [J]. Computer Science, 2022, 49(2): 265-271. |
[14] | CHEN Wei, LI Hang, LI Wei-hua. Ensemble Learning Method for Nucleosome Localization Prediction [J]. Computer Science, 2022, 49(2): 285-291. |
[15] | LIU Zhen-yu, SONG Xiao-ying. Multivariate Regression Forest for Categorical Attribute Data [J]. Computer Science, 2022, 49(1): 108-114. |
|