Computer Science ›› 2018, Vol. 45 ›› Issue (11A): 1-11.

• Review •     Next Articles

Research Progress and Mainstream Methods of Frequent Itemsets Mining

LI Guang-pu, HUANG Miao-hua   

  1. School of Automotive Engineering,Wuhan University of Technology,Wuhan 430070,China
  • Online:2019-02-26 Published:2019-02-26

Abstract: As one of the main research modules of data mining,association analysis is mainly used to find strong correlation features hidden in large data sets.The majority of association rule mining tasks can be divided into generation of frequent patterns (frequent itemsets,frequent sequences,frequent subgraphs) and generation of rule.The former finds itemsets,sequences,and subgraphs satisfying the minimum support threshold in the dataset.The latter extracts high confidence rules from the frequent patterns found in the previous step.Frequent itemset mining is a key issue in many data mining tasks,and it is also the core of association rule mining algorithms.For more than a decade,scholars have devoted themselves to improving the efficiency of generating frequent itemsets,improving algorithms from different perspectives,so as to improve the efficiency of algorithms,and a large number of efficient and scalable algorithms have been proposed.This article makes an in-depth analysis of frequent item set mining,introduces and reviews the typical algorithms of complete frequent itemsets,closed frequent itemsets,and maximal frequent itemsets.Finally,the research direction of frequent itemsets mining algorithm was briefly analyzed.

Key words: Correlation analysis, Frequent itemsets mining, Full frequent itemsets mining, Maximum frequent itemsets mining

CLC Number: 

  • TP391
[1]AGRAWAL R,SRIKANT R.Fast Algorithms for Mining Association Rules in Large Databases[C]∥International Con-ference on Very Large Data Bases.Morgan Kaufmann Publi-shers Inc.,1994:487-499.
[2]ZAKI M J.CHARM:An Efficient Algorithm for Closed Itemset Mining[C]∥Siam International Conference on Data Mining.2002:457-473.
[3]BAYARDO R J.Efficiently mining long patterns from databases[C]∥ACM SIGMOD International Conference on Management of Data.ACM,1998:85-93.
[4]陈慧萍,王建东,王煜.频繁项集挖掘的研究与进展[J].计算机仿真,2006,23(4):68-73.
[5]AGARWAL R C,AGGARWAL C C,PRASAD V V V.A Tree Projection Algorithm for Generation of Frequent Item Sets[M].Academic Press,2000.
[6]HAN J,PEI J,YIN Y.Mining frequent patterns without candidate generation[C]∥Acm Sigmod International Conference on Management of Data.2000:1-12.
[7]EL-HAJJ M.Inverted matrix:efficient discovery of frequent items in large datasets in the context of interactive mining[C]∥Acm Sigkdd International Conference on Knowledge Discovery &Data Mining.National Acad Sciences,2003:109-118.
[8]GATUHA G,JIANG T.Smart frequent itemsets mining algorithm based on FP-tree and DIFFset data structures[J].Turkish Journal of Electrical Engineering & Computer Sciences,2017,25:2096-2107.
[9]ZAKI M J.Scalable Algorithms for Association Mining[M].IEEE Educational Activities Department,2000:372-390.
[10]蓝祺花,吴博.频繁项集挖掘算法研究[J].计算机与现代化,2009,2009(3):60-65.
[11]PARK J S,CHEN M S,YU P S.An effective hash-based algorithm for mining association rules[J].ACM SIGMOD Record,1995,24(2):175-186.
[12]SAVASERE A,OMIECINSKI E,NAVATHE S B.An Efficient Algorithm for Mining Association Rules in Large Databases[C]∥International Conference on Very Large Data Bases.Morgan Kaufmann Publishers Inc.,1995:432-444.
[13]陈波,董鹏,邵勇.基于Apriori算法及其改进算法综述[C]∥中国通信学会第五届学术年会.2008.
[14]TOIVONEN H.Sampling Large Databases for Association Rules[C]∥International Conference on Very Large Data Bases.Morgan Kaufmann Publishers Inc.,1996:134-145.
[15]BRIN S,MOTWANI R,ULLMAN J D,et al.Dynamic itemset counting and implication rules for market basket data[C]∥Acm Sigmod International Conference on Management of Data.ACM,1997:255-264.
[16]CHEUNG D W,HAN J,NG V T,et al.Maintenance of disco-vered association rules in large databases:an incremental updating technique[C]∥Twelfth International Conference on Data Engineering.IEEE,1996:106-114.
[17]CHEUNG W L,LEE S D,KAO B.A General Incremental Technique for Maintaining Discovered Association Rules[C]∥International Conference on Database Systems for Advanced Applications.World Scientific Press,1997:185-194.
[18]THOMAS S,BODAGALA S,ALSABTI K,et al.An Efficient Algorithm for the Incremental Updation of Association Rules in Large Databases[C]∥KDD.1997:263-266.
[19]PARK J S,CHEN M S,YU P S.Efficient parallel data mining for association rules[C]∥International Conference on Information and Knowledge Management.ACM,1995:31-36.
[20]AGRAWAL R,SHAFER J C.Parallel Mining of Association Rules[J].IEEE Transactions on Knowledge & Data Enginee-ring,2007,8(6):962-969.
[21]CHEUNG D W,HAN J,NG V T,et al.A fast distributed algorithm for mining association rules[C]∥International Conference on Parallel and Distributed Information Systems.IEEE,1996:31-42.
[23]LI H,ZHANG Y,ZHANG N,et al.A Heuristic Rule Based Approximate Frequent Itemset Mining Algorithm[J].Procedia Computer Science,2016,91:324-333.
[24]ZAKI M J,PARTHASARATHY S,OGIHARA M,et al.Parallel Algorithms for Discovery of Association Rules[J].Data Mi-ning & Knowledge Discovery,1997,1(4):343-373.
[25]HAN E H,KARYPIS G,KUMAR V.Scalable Parallel Data Mining for Association Rules[J].Acm Sigmod Record,1997,26(2):277-288.
[26]CERIN C,GAY J S,MAHEC G L,et al.Efficient data-structures and parallel algorithms for association rules discovery[C]∥Proceedings of the Fifth Mexican International Conference in Computer Science,2004(ENC 2004).IEEE,2004:399-406.
[27]THOMAS W.Parallel mining of association rules using a lattice based approach[C]∥SoutheastCon.IEEE,2009:645-650.
[28]ISHIKAWA H,SHIOYA Y,OMI T,et al.A Peer-to-Peer Approach to Parallel Association Rule Mining[M]∥Knowledge-Based Intelligent Information and Engineering Systems.Berlin:Springer,2004:178-188.
[29]YONG W,ZHE Z,FANG W.A parallel algorithm of association rules based on cloud computing[C]∥International ICST Conference on Communications and Networking in China.IEEE,2014:415-419.
[30]GUPTA E,DONEPUDI H.A sparse memory allocation data structure for sequential and parallel association rule mining[M].Kluwer Academic Publishers,2016.
[31]DANG N,VO B,LE B.Efficient strategies for parallel mining class association rules[J].Expert Systems with Applications,2014,41(10):4716-4729.
[32]ASADPOUR M,SADREDDINI M H,DASTGHAIBYFARD G.Parallel Mining of Association Rules from Gene Expression Databases[C]∥International Conference on Fuzzy Systems and Knowledge Discovery.IEEE,2007:68-73.
[33]YU K M,ZHOU J,HONG T P,et al.A load-balanced distributed parallel mining algorithm[J].Expert Systems with Applications,2010,37(3):2459-2464.
[34]PELÁEZ V C,AUSÍN L,RUIZ M M,et al.Mining Fuzzy Association Rules Based on Parallel Particle Swarm Optimization Algorithm[J].Computer Science,2013,21(2):147-162.
[35]LAN V,ALAGHBAND G.Novel parallel method for mining frequent patterns on multi-core shared memory systems[C]∥International Workshop on Data-Intensive Scalable Computing Systems.2013:49-54.
[36]JIN D,ZIAVRAS S G.A Super-Programming Approach for Mining Association Rules in Parallel on PC Clusters[J].IEEE Transactions on Parallel & Distributed Systems,2004,15(9):783-794.
[37]MANASKASEMSAK N B,BENJAMAS N N,RUNGSAWANG A,et al.Parallel association rule mining based on FI-growth algorithm[C]∥2007 International Conference on Parallel and Distributed Systems.2007:1-8.
[38]EL-HAJJ M,ZAIANE O R.Parallel association rule mining with minimum inter-processor communication[C]∥InternationalWorkshop on Database and Expert Systems Applications.IEEE,2003:519-523.
[39]BURDA M,PAVLISKA V,VALASEK R.Parallel mining of fuzzy association rules on dense data sets[C]∥2014 IEEE International Conference on Fuzzy Systems(FUZZ-IEEE).IEEE,2014:2156-2162.
[40]ABRAHAM S,JOSEPH S.A Coherent Rule Mining Method for Incremental Datasets Based on Plausibility[J].Procedia Technology,2016,24:1292-1299.
[41]LEE C H,LIN C R,CHEN M S.Sliding window filtering:An efficient method for incremental mining on a time-variant database[J].Information Systems,2005,30(3):227-244.
[42]LU J,WANG L,FANG Y,et al.A novel method on incremental mining of spatial co-locations[C]∥International Conference on Big Data and Smart Computing.IEEE,2016:69-76.
[43]LEE W J,LEE S J.A general mining method for incremental updation in large databases[C]∥IEEE International Conference on Systems,Man and Cybernetics.IEEE,2003:1423-1428.
[44]AHMED C F,TANBEER S K,JEONG B S.An Efficient Me-thod for Incremental Mining of Share-Frequent Patterns[C]∥International Asia-Pacific Web Conference.IEEE Computer Society,2010:147-153.
[45]OTEY M E,PARTHASARATHY S,WANG C,et al.Parallel and distributed methods for incremental frequent itemset mining[J].IEEE Transactions on Systems Man & Cybernetics Part B Cybernetics A Publication of the IEEE Systems Man & Cybernetics Society,2004,34(6):2439-2450.
[46]HE H T,ZHANG S L.A New Method for Incremental Updating Frequent Patterns Mining[C]∥International Conference on Innovative Computing,Informatio and Control.IEEE Computer Society,2007:561.
[47]LIN C W,LAN G C,HONG T P.An incremental mining algorithm for high utility itemsets[M].Pergamon Press,2012.
[48]LIN C W,HONG T P,LU W H.The Pre-FUFP algorithm for incremental mining[J].Expert Systems with Applications,2009,36(5):9498-9505.
[49]YAFI E,ALAM A H M A,BISWAS R.Incremental Mining of Shocking Association Patterns[J].International Arab Journal of Information Technology,2011,9(6):504-510.
[50]GHARIB T F,NASSAR H,TAHA M,et al.An efficient algorithm for incremental mining of temporal association rules[J].Data & Knowledge Engineering,2010,69(8):800-815.
[51]MASSEGLIA F,PONCELET P,TEISSEIRE M.Incremental mining of sequential patterns in large databases[J].Data & Knowledge Engineering,2003,46(1):97-121.
[52]LI H.An algorithm to discover the approximate probabilistic frequent itemsets with sampling method[C]∥International Conference on Natural Computation,Fuzzy Systems and Know-ledge Discovery.IEEE,2016:1428-1432.
[53]WU X,FAN W,PENG J,et al.Iterative sampling based fre-quent itemset mining for big data[J].International Journal of Machine Learning & Cybernetics,2015,1(6):1-8.
[54]RIONDATO M,UPFAL E.Efficient Discovery of Association Rules and Frequent Itemsets through Sampling with Tight Performance Guarantees[J].Acm Transactions on Knowledge Discovery from Data,2014,8(4):1-32.
[55]PIETRACAPRINA A,RIONDATO M,UPFAL E,et al.Mining top-K frequent itemsets through progressive sampling[J].Data Mining & Knowledge Discovery,2010,21(2):310-326.
[56]MAHAFZAH B A,AL-BADARNEH A F,ZAKARIA M Z.A new sampling technique for association rule mining[J].Journal of Information Science,2009,35(3):358-376.
[57]ZAKI J,PARTHASARATHY S,LIN W,et al.Evaluation of sampling for data mining of association rules[C]∥Proceedings of Seventh International Workshop on Research Issues in Data Engineering.1997:42-49.
[58]BRONNIMANN H,CHEN B,DASH M,et al.Efficient data reduction with EASE[C]∥Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2003:59-68.
[59]CHEN B,HAAS P,SCHEUERMANN P.A new two-phase sampling based algorithm for discovering association rules[C]∥Proceedings of the Eighth ACM SIGKDD International Confe-rence on Knowledge Discovery and Data Mining.2002:462-468.
[60]AKCAN H,ASTASHYN A,BRONNIMANN H.Deterministic algorithms for sampling count data[J].Data and Knowledge Engineering,2008,64(2):405-418.
[61]PARTHASARATHY S.Efficient progressive sampling for association rules[C]∥Proceedings of the IEEE International Conference on Data Mining.2002:354-361.
[62]BANDYOPADHYAY S,SAHA S.GAPS:A clustering method using a new point symmetry-based distance measure[J].Pattern Recognition,2007,40(12):3430-3451.
[63]ANERJEE A,KRUMPELMAN C,GHOSH J,et al.Model-based overlapping clustering[C]∥Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Disco-very in Data Mining.2005:532-537.
[64]CHEN Y L,HU H L.An overlapping cluster algorithm to provide non-exhaustive clustering[J].European Journal of Operational Research,2006,173(3):762-780.
[65]SAHA S,BANDYOPADHYAY S.Application of a new symmetry-based cluster validity index for satellite image segmentation[J].IEEE Geoscience and Remote Sensing Letters,2008,5(2):166-170.
[66]CHEN C,HORNG S,HUANG C.Locality sensitive hashing for sampling-based algorithms in association rule mining[J].Expert Systems with Applications,2011,38(10):12388-12397.
[67]EL-HAJJ M.COFI approach for mining frequent itemsets revi-sited[M]∥DMKD’04.Paris:ACM,2004:70-75.
[68] EL-HAJJ M,ZAÍANE O.Inverted matrix:Efficient discovery of frequent items in large datasets in the context of interactive mining[C]∥Acm Sigkdd International Conference on Knowledge Discevery & Data Mining.National Acad Sciences,2003:109-118.
[69]AGARWAL R C,AGGARWAL C C,V V,et al.Tree Projection Algorithm for Generation of Frequent Item Sets[J].Journal of Parallel and Distributed Computing,2001,61(3):350-371.
[70]PEI J,HAN J,LU H,et al.H-mine:Hyper-structure mining of frequent patterns in large databases[C]∥IEEE International Conference on Data Mining.IEEE,2002:441.
[71]LIU J,PAN Y,WANG K,et al.Mining frequent item sets by opportunistic projection[C]∥8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.ACM,2002:229-238.
[72]LIU G,LU H,LOU W,et al.Ascending Frequency Ordered Prefix-tree:Efficient Mining of Frequent Patterns[C]∥Procee-dings of KDD Conference.2003:65-73.
[73]AGARWAL R,AGGARWAL C,PRASAD V.Depth first gene-ration of long patterns[C]∥ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.ACM,2000:108-118.
[74]PIETRACAPRINA A,ZANDOLIN D.Mining Frequent Item-sets Using Patricia Tries[C]∥Proceedings of the IEEE ICDM Workshop on FIMI.2003.
[75]SUCAHYO Y G,GOPALAN R P.CT-ITL:efficient frequent item set mining using a compressed prefix tree with pattern growth[C]∥Australasian Database Conference.Australian Computer Society,2003:95-104.
[76]SUCAHYO Y G,GOPALAN R P.CT-PRO:A Bottom-Up Non Recursive Frequent Itemset Mining Algorithm Using Compressed FP-Tree Data Structure[C]∥Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations(Fimi’04).Brighton,Uk,DBLP,2004.
[77]GRAHNE G,ZHU J.Fast algorithms for frequent itemset mi-ning using FP-trees[J].IEEE Transactions on Knowledge & Data Engineering,2005,17(10):1347-1362.
[78]秦亮曦,苏永秀,刘永彬,等.基于压缩FP-树和数组技术的频繁模式挖掘算法[J].计算机研究与发展,2008,45(z1):244-249.
[79]ZHU Q,LIN X.Depth First Generation of Frequent Patterns Without Candidate Generation[M]∥Emerging Technologies in Knowledge Discovery and Data Mining.Springer Berlin Heidelberg,2007:378-388.
[80]杨云,罗艳霞.FP-Growth算法的改进[J].计算机工程与设计,2010,31(7):1506-1509.
[81]章志刚,吉根林.一种基于FP-Growth的频繁项目集并行挖掘算法[J].计算机工程与应用,2014,50(2):103-106.
[82]WEI X,MA Y,ZHANG F,et al.Incremental FP-Growth mining strategy for dynamic threshold value and database based on Map-Reduce[C]∥IEEE,International Conference on Computer Supported Cooperative Work in Design.IEEE,2014:271-276.
[83]陆可,桂伟,江雨燕,等.基于Spark的并行FP-Growth算法优化与实现[J].计算机应用与软件,2017,34(9):273-278.
[84]王建明,袁伟.基于节点表的FP-Growth算法改进[J].计算机工程与设计,2018,39(1):140-145.
[85]ZAKI M J.Scalable algorithms for association mining[M].IEEE Educational Activities Department,2000.
[86]ZAKI M J,GOUDA K.Fast vertical mining using diffsets[C]∥ACM SIGKDD International Conference on Knowledge Disco-very and Data Mining.ACM,2003:326-335.
[87]SHENOY P,HARITSA J R,SUDARSHAN S,et al.Turbo-charging vertical mining of large databases[J].Acm Sigmod Record,2000,29(2):22-33.
[88]XIONG Z Y,CHEN P E,ZHANG Y F.Improvement of Eclat algorithm for association rules based on hash Boolean matrix[J].Application Research of Computers,2010,27(4):1323-1325.
[89]YU X,WANG H.Improvement of Eclat Algorithm Based on Support in Frequent Itemset Mining[J].Journal of Computers,2014,9(9):2116-2123.
[90]ZHANG Y F,XIONG Z Y,GENG X F,et al.Analysis and Improvement of Eclat Algorithm[J].Computer Engineering,2010,36(23):28-30.
[91]FENG P E,YU L,QIU Q Y,et al.Strategies of efficiency improvement for Eclat algorithm[J].Journal of Zhejiang University,2013,47(2):223-230.
[92]PASQUIER N,BASTIDE Y,TAOUIL R,et al.Discovering Frequent Closed Itemsets for Association Rules[J].Lecture Notes in Computer Science,1999,1540:398-416.
[93]PEI J,HAN J,MAO R.CLOSET:An Efficient Algorithm for Mining Frequent Closed Itemsets[C]∥SIGMOD International Workshop on Data Mining and Knowedge Discovery.2000:21-30.
[94]WANG J,HAN J,PEI J.CLOSET+:searching for the best strategies for mining frequent closed itemsets[C]∥ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.ACM,2003:236-245.
[95]GRAHNE G.Efficiently using prefix-trees in mining frequent itemsets[C]∥Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations.2003.
[96]CHENG H,YU P S,HAN J.AC-Close:Efficiently Mining Approximate Closed Itemsets by Core Pattern Recovery[C]∥International Conference on Data Mining.IEEE,2006:839-844.
[97]UNO T,KIYOMI M,ARIMURA H.Efficient Mining Algo-rithms for Frequent/Closed/Maximal Itemsets[C]∥FIMI’04.2004.
[98]LUCCHESE C,ORLANDO S,PEREGO R.Fast and Memory Efficient Mining of Frequent Closed Itemsets[J].IEEE Transa-ctions on Knowledge & Data Engineering,2006,18(1):21-36.
[99]CHI Y,WANG H,YU P S,et al.Moment:maintaining closed frequent itemsets over a stream sliding window[C]∥IEEE International Conference on Data Mining.IEEE,2006:59-66.
[100]CHIU S C,LI H F,HUANG J L,et al.Incremental mining of closed inter-transaction itemsets over data stream sliding windows[J].Journal of Information Science,2011,37(2):208-220.
[101]NORI F,DEYPIR M,HADI M,et al.A new sliding window based algorithm for frequent closed itemset mining over data streams[J].Journal of Systems & Software,2013,86(3):615-623.
[102]DONG J,HAN M.BitTableFI:An efficient mining frequent itemsets algorithm[J].Knowledge-Based Systems,2007,20(4):329-335.
[103]SONG W,YANG B,XU Z.Index-BitTableFI:An improved algorithm for mining frequent itemsets[J].Knowledge-Based Systems,2008,21(6):507-513.
[104]BAYARDO R J.Efficiently mining long patterns from databases[C]∥ACM SIGMOD International Conference on Management of Data.ACM,1998:85-93.
[105]AGARWAL R C,AGGARWAL C C,PRASAD V V V.Depth first generation of long patterns[C]∥ACM SIGKDD International Conference on Knowedge Discovery and Data Mining.ACM,2000:108-118.
[106]BURDICK D,CALIMLIM M,FLANNICK J,et al.MAFIA:A Maximal Frequent Itemset Algorithm[C]∥International Conference on Data Engineering.IEEE Computer Society,2001:443.
[107]GOUDA K,ZAKI M J.Efficiently Mining Maximal Frequent Itemsets[C]∥IEEE International Conference on Data Mining.IEEE,2002:2405-2409.
[108]ZOU Q,CHU W W,LU B.SmartMiner:A Depth First Algorithm Guided by Tail Information for Mining Maximal Frequent Itemsets[C]∥IEEE International Conference on Data Mining,2002(ICDM 2003).IEEE,2002:570-577.
[109]宋余庆,朱玉全,孙志挥,等.基于FP-Tree的最大频繁项目集挖掘及更新算法[J].软件学报,2003,14(9):1586-1592.
[110]颜跃进,李舟军,陈火旺,等.基于FP-Tree有效挖掘最大频繁项集[J].软件学报,2005,16(2):215-222.
[111]秦亮曦,史忠植.SFP-Max-基于排序FP-树的最大频繁模式挖掘算法[J].计算机研究与发展,2005,42(2):217-223.
[112]JU S,CHEN C.MMFI:An Effective Algorithm for Mining Maximal Frequent Itemsets[C]∥International Symposiums on Information Processing.IEEE Computer Society,2008:144-148.
[113]钱雪忠,惠亮.关联规则中基于降维的最大频繁模式挖掘算法[J].计算机应用,2011,31(5):1339-1343.
[114]ZHAO Z G,WANG F,WAN J.Maximal frequent itemsets mi-ning algorithm based on OWSFP-tree[J].Computer Engineering &Design,2013,34(5):1687-1680.
[115]YANG P,PENG H,ZHOU X,et al.FP-MFIA:improved algorithm for mining maximum frequent itemsets based on frequent-pattern tree[J].Journal of Computer Applications,2015,35(3):775-778.
[1] YANG Xiao, WANG Xiang-kun, HU Hao, ZHU Min. Survey on Visualization Technology for Equipment Condition Monitoring [J]. Computer Science, 2022, 49(7): 89-99.
[2] SUN Lin, PING Guo-lou, YE Xiao-jun. Correlation Analysis for Key-Value Data with Local Differential Privacy [J]. Computer Science, 2021, 48(8): 278-283.
[3] ZHANG Qin, CHEN Hong-mei, FENG Yun-fei. Overlapping Community Detection Method Based on Rough Sets and Density Peaks [J]. Computer Science, 2020, 47(5): 72-78.
[4] LI Gang, WANG Chao, HAN De-peng, LIU Qiang-wei, LI Ying. Study on Multimodal Image Genetic Data Based on Deep Principal Correlated Auto-encoders [J]. Computer Science, 2020, 47(4): 60-66.
[5] LU Xian-guang, DU Xue-hui, WANG Wen-juan. Alert Correlation Algorithm Based on Improved FP Growth [J]. Computer Science, 2019, 46(8): 64-70.
[6] RU Feng, XU Jin, CHANG Qi, KAN Dan-hui. High Order Statistics Structured Sparse Algorithm for Image Genetic Association Analysis [J]. Computer Science, 2019, 46(4): 66-72.
[7] CHEN Zheng, TIAN Bo, HE Zeng-you. PPI Network Inference Algorithm for PCP-MS Data [J]. Computer Science, 2019, 46(12): 313-321.
[8] CHEN Feng, MENG Zu-qiang. Study on Heterogeneous Multimodal Data Retrieval Based on Hash Algorithm [J]. Computer Science, 2019, 46(10): 49-54.
[9] CHEN Li-li, ZHU Feng, SHENG Bin, CHEN Zhi-hua. Quality Evaluation of Color Image Based on Discrete Quaternion Fourier Transform [J]. Computer Science, 2018, 45(8): 70-74.
[10] WU Jun and WANG Chun-zhi. Multiple Correlation Analysis and Application of Granular Matrix Based on Big Data [J]. Computer Science, 2017, 44(Z11): 407-410.
[11] CUI Hong-fei, LIU Jia, GU Jing-jing and ZHUANG Yi. 3D Localization Estimation Algorithm Based on Locality Preserving Canonical Correlation Analysis in Wireless Sensor Networks [J]. Computer Science, 2017, 44(9): 105-109.
[12] JU An-kang, GUO Yuan-bo, ZHU Tai-ming and WANG Tong. Survey on Network Security Event Correlation Analysis Methods and Tools [J]. Computer Science, 2017, 44(2): 38-45.
[13] XU Jie, LIANG Jiu-zhen, WU Qin and LI Min. Kernel Canonical Correlation Analysis Feature Fusion Method and Application [J]. Computer Science, 2016, 43(1): 35-39.
[14] LI Ling and LI Gui-juan. Face Automatic Recognition Algorithm for Small Sample High-dimensional Features [J]. Computer Science, 2014, 41(6): 314-316.
[15] . Study on Mining Data Streams in WSNs for Environment Monitoring [J]. Computer Science, 2012, 39(Z11): 111-113.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!